
Chapter Objectives

After studying this chapter, you should be able to:

! Write a graphical user interface using existing Java components

! Implement interfaces using the Model-View-Controller pattern

! Structure a graphical user interface using multiple views

! Write new components for use in graphical user interfaces

A graphical user interface (GUI) often gives us the first glimpse of a new program. The
information it displays indicates the program’s purpose, whereas a quick review of the
interface’s controls and menus gives us a feel for what the program can do.

Graphical user interfaces operate in a fundamentally different way from text-based
interfaces. In a text-based interface, the program is in control, demanding information
when it suits the program rather than the user. With a graphical user interface, the user
has much more control; users can perform operations in their preferred order rather
than according to the program’s demands. Naturally, this difference requires structur-
ing the program in a different way.

This chapter pulls together the graphical user interface thread running through each
chapter and adds new material, enabling us to design and build graphical user inter-
faces for our programs.

Chapter 13 Graphical User Interfaces

697

13.1 Overview

Building the graphical user interface (GUI) for a program can be one of the more
rewarding parts of programming. Finally, we begin to see the results of our labor and
are able to manipulate our program directly. The user interface is also a place where we
can use aesthetic skills and sensibilities.

On the other hand, creating GUIs can involve a lot of time and frustration. Developing
them will call upon every skill we’ve learned so far: extending existing classes, writing
methods, using collaborating classes and instance variables, using Java interfaces, and
so on. However, following a concrete set of steps will make the job easier. Watch for
patterns that occur repeatedly. Master those patterns, and you’ll be able to write GUIs
like a professional.

We will proceed by developing a variant of the game of Nim. The requirements are
specified in Figure 13-1.

13.1.1 Models, Views, and Controllers

Recall from Chapter 8 that graphical user interfaces are usually structured using the
Model-View-Controller pattern. Figure 13-2, reproduced here from Section 8.6.2,
shows the core ideas.

A game of Nim begins with a pile of
tokens. Two players take turns
removing one, two, or three tokens
from the pile. The last player to
remove a token wins the game. The
players will be designated “red” and
“black.” The first one to move will be
chosen randomly. The initial size of
the pile is between ten and twenty
tokens and is set randomly.

An example of one possible user
interface is shown on the right.

698
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-1)

Requirements for the
game of Nim

The model is the part of the program that represents the problem at hand. In our game
of Nim, it’s the model that will keep track of how many tokens remain on the pile,
whose turn it is to move next, and who (if anyone) has won the game. The model also
enforces rules. For example, it will not allow a player to take more than three tokens.

The user interface is composed of the view and the controller. The user, represented by
the eye and the mouse, uses the view to obtain information from the model. It’s the
view, for example, that displays the current size of the pile and whose turn it is. The
user interacts with the controller to change the model. In the case of Nim, the con-
troller is used to remove some tokens or to start a new game.

The arrow between the controller and the view indicates that the controller will need
to call methods in the view. The lack of an arrow going the other way indicates that the
view will generally not need to call the controller’s methods. The two arrows between
the user interface and the model indicate that both the view and the controller will
have reason to call the model’s methods—the view to obtain information to display
and the controller to tell the model how the user wants it to change. The dotted arrow
from the model to the user interface indicates that the model will be very restrictive in
how it calls methods in the interface. Essentially, it will call only a single method to tell
the view that it has changed and that the view needs to update the display.

The interaction of the controller, model, and view may seem complicated at first.
However, it follows a standard pattern, which includes the following typical steps, per-
formed in the following order:

! The user manipulates the user interface—for example, enters text in a component.

! The user interface component notifies its controller by calling a method that
we write.

! The controller calls a mutator method in the model, perhaps supplying addi-
tional information such as text that was entered in the component.

! Inside the mutator method, the model changes its state, as appropriate. Then it
calls the view’s update method, informing the view that it needs to update the
information it displays.

! Inside the update method, the view calls accessor methods in the model to
gather the information it needs to display. It then displays that information.

View

Controller

User Interface

Model

699
13.1

O
VERVIEW

(figure 13-2)

View and controller
interact with the user and

the model

KEY IDEA

The model maintains
relevant information,

the view displays it,
and the controller
requests changes

to it.

Our first graphical user interface will use a single view and controller. We will learn in
Section 13.5, however, that using multiple views and controllers can actually make an
interface easier to build. We will plan for that possibility from the beginning.

13.1.2 Using a Pattern

Models, views, and controllers make up a pattern that occurs repeatedly. The steps for
using this pattern are shown in Figure 13-3. You’ll find that many of the steps are
familiar from previous chapters in the book. None of this is truly new material; it just
puts together what we have already learned in a specific way, resulting in a graphical
user interface.

We will elaborate on these steps in each of the next three subsections.

13.2 Setting up the Model and View

The first step sets up the basic architecture for the Model-View-Controller pattern. This
is where the connections between the classes are established, and by the end of this step,
we will have a program that we can run, even though it won’t do anything more than
show us an empty frame. The class diagram of the resulting program is shown in
Figure 13-4.

Set up the Model and View

1. Write three nearly empty classes:
a. The model, implementing becker.util.IModel.
b. The view, extending JPanel and implementing becker.util.IView.

The constructor takes an instance of the model as an argument.
c. A class containing a main method to run the program.

2. In main, create instances of the model and the view. Display the view in a
frame.

Build and Test the Model

1. Design, implement, and test the
model. In particular,
a. add commands used by the

controllers to change the
model

b. add queries used by the views
to obtain the information to
display

2. Call updateAllViews just before
exiting any method that changes
the model’s state.

Build the View and Controllers

1. Design the interface.
2. Construct the required

components and lay them out in
the view.

3. Write updateView to update the
information displayed by the view
to reflect the model.

4. Write appropriate controllers for
each of the components that
update the model. Register the
controllers.

700
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

KEY IDEA

Interfaces usually
have more than
one view.

Model-View-Controller

(figure 13-3)

Steps for building a
graphical user interface

13.2.1 The Model’s Infrastructure

The model’s primary purpose is to model the problem, in our case the game of Nim. It
must also inform the views each time the model changes (and therefore the view needs to
change the information it displays). It is this update function that we are focusing on now.

It’s possible that a model may have several views, and we will provide for that possi-
bility right away by keeping a list of views that we need to inform of changes. These
requirements are embodied in the IModel interface. It specifies that a model needs to
be able to add a view, remove a view, and update all views. The model will only need
to call one method in the views, updateView. It expects each view to implement the
IView interface.

A class with this infrastructure is shown in Listing 13-1. Every model will start out just
like this except that the name of the class, the constructor, and the class documentation
will change to reflect the program’s purpose.

NimModel
-ArrayList<IView> views
other instance variables omitted
+NimModel()
+void addView(IView view)
+void removeView(IView view)
+void updateAllViews()
other methods omitted

NimView
-NimModel model
other instance variables omitted
+NimView(NimModel aModel)
+void updateView()
other methods omitted

Nim

+void main(String[] args)

IModel IView

701
13.2

S
ETTIN

G
U
P

TH
E

M
O
D
EL

AN
D

V
IEW

(figure 13-4)

Partial class diagram
for Nim

LOOKING BACK

ArrayLists were
discussed in

Section 8.5.1,
interfaces in
Section 7.6.

KEY IDEA

The IModel interface
specifies methods

needed in the model
to manage views.

Listing 13-1: The model’s class with infrastructure to inform views of changes

1 importƒbecker.util.IModel;
2 importƒbecker.util.IView;
3 importƒjava.util.ArrayList;
4
5 /** A class implementing a version of Nim. There is a (virtual) pile of tokens. Two
6 *ƒ players take turns removing 1, 2, or 3 tokens. The player who takes the last token
7 *ƒ wins the game.
8 *
9 * @author Byron Weber Becker */

10 publicƒclassƒNimModelƒextendsƒObjectƒimplementsƒIModel

ch13/nim
Infrastructure/

Of course, more must be added to NimModel. In particular, it does nothing yet to
model the game of Nim. But when one of the players takes some tokens from the pile,
for example, we now have the infrastructure in place to inform all of the views that
they need to update the information they are showing the players.

Using AbstractModel

These three methods are always required to implement a model. Instead of writing
them each time we create a model class, we can put them in their own class. Our model
can simply extend that class.

702
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-1: The model’s class with infrastructure to inform views of changes (continued)

11 {ƒprivateƒArrayList<IView>ƒviewsƒ=ƒnewƒArrayList<IView>();
12
13 ƒƒ/** Construct a new instance of the game of Nim. */
14 ƒƒpublicƒNimModel()
15 ƒƒ{ƒsuper();
16 ƒƒ}
17
18 ƒƒ/** Add a view to display information about this model.
19 ƒƒ*ƒ@param view The view to add. */
20 ƒƒpublicƒvoidƒaddView(IViewƒview)
21 ƒƒ{ƒthis.views.add(view);
22 ƒƒ}
23
24 ƒƒ/** Remove a view that has been displaying information about this model.
25 ƒƒ*ƒ@param view The view to remove. */
26 ƒƒpublicƒvoidƒremoveView(IViewƒview)
27 ƒƒ{ƒthis.views.remove(view);
28 ƒƒ}
29
30 ƒƒ/** Inform all the views currently displaying information about this model that the
31 ƒƒ*ƒmodel has changed and their display may need changing too. */
32 ƒƒpublicƒvoidƒupdateAllViews()
33 ƒƒ{ƒforƒ(IViewƒviewƒ:ƒthis.views)
34 ƒƒƒƒ{ƒview.updateView();
35 ƒƒƒƒ}
36 ƒƒ}
37 }

Such a class, AbstractModel, is in the becker.util package. Its code is almost
exactly like the code in Listing 13-1 except for the name of the class. NimModel is then
implemented as follows:

importƒbecker.util.AbstractModel;

publicƒclassƒNimModelƒextendsƒAbstractModel
{
ƒƒpublicƒNimModel()
ƒƒ{ƒsuper();
ƒƒ}

ƒƒ// Other methods will be added here to implement the model.
}

AbstractModel implements IModel, implying that NimModel also implements that
interface. The clause implementsƒIModel does not need to be repeated.

The Java library has a class named Observable that is very similar to AbstractModel. It
is designed to work with an interface named Observer that is very similar to IView. Why
don’t we use them instead? There are two reasons.

First, the update method in Observable is more complex than we need.

Second, and more importantly, the Java library doesn’t have an interface corresponding
to IModel. Therefore, the model must always extend Observable. Sometimes this isn’t
a problem (as with NimModel), but other times the model must extend another class. In
those situations, the missing interface is required, and these classes can’t be used.

At the time of this writing, Java library contains 6,558 classes. A number of those
classes define their own versions of Observer and Observable, as we have done. It’s
interesting to note that none of the classes use Observer and Observable.

13.2.2 The View’s Infrastructure

Each view will be a subclass of JPanel1 that contains the user interface components
required to interact with the model. For now, however, we will provide only the infra-
structure for updating the view. That consists of implementing the IView interface,
which specifies the updateView method called by the model in updateAllViews.
This is all shown in Listing 13-2.

703
13.2

S
ETTIN

G
U
P

TH
E

M
O
D
EL

AN
D

V
IEW

KEY IDEA

A component is
nothing more than an

object designed for
user interfaces.

Buttons, scroll bars,
and text fields are all

examples of
components.

1 This is true most of the time. It’s convenient for menus to extend JMenuBar and toolbars to extend
JToolBar.

13.2.3 The main Method

The last step in setting up the infrastructure is to write the main method. It constructs
an instance of the model and an instance of the view. It then displays the view in an
appropriately sized frame. This is shown in Listing 13-3.

704
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-2: The view’s class set up to receive notification of changes in the model

1 importƒjavax.swing.JPanel;
2 importƒbecker.util.IView;
3
4 /** Provide a view of the game of Nim to a user.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
8 {ƒprivateƒNimModelƒmodel;
9

10 ƒƒ/** Construct the view.
11 ƒƒ* @param aModel The model we will be displaying. */
12 ƒƒpublicƒNimView(NimModelƒaModel)
13 ƒƒ{ƒsuper();
14 ƒƒƒƒthis.modelƒ=ƒaModel;
15 ƒƒƒƒthis.model.addView(this);
16 ƒƒƒƒthis.updateView();
17 ƒƒ}
18
19 ƒƒ/** Called by the model when it changes. Update the information this view displays. */
20 ƒƒpublicƒvoidƒupdateView()
21 ƒƒ{
22 ƒƒ}
23 }

ch13/nim
Infrastructure/

The view is passed an instance of the model when it is constructed. The model is saved
in an instance variable, and the view adds itself to the model’s list of views. Finally, the
view must update the information it displays by calling updateView in line 16.

13.3 Building and Testing the Model

Figure 13-3 describes the steps for building a user interface. It suggests that the model
requires commands to change its state and queries for the views to use in updating the
display. If we keep this in mind while using the development process discussed in
Chapter 11, we will discover that the model for Nim needs the following methods:

! removeTokens, a command to remove one, two, or three tokens from the pile

! getPileSize, a query returning the current size of the pile

! getWhoseTurn, a query returning whose turn it is

! getWinner, a query returning which player, if any, has won the game

The requirements in Figure 13-1 specify that the first player and the initial size of the
pile are chosen randomly. The default constructor will do that, but since randomness
makes the class hard to test, we’ll also add a private constructor, allowing our test har-
ness to easily specify the pile size and first player.

Representing the two players is a perfect job for an enumeration type. We will use three
values: one for the red player, one for the black player, and one for nobody. The last
one might be used, for example, as the answer to the query of who has won the game
(if the game isn’t over yet, nobody has won).

705
13.3

B
U
ILD

IN
G

AN
D

T
ESTIN

G
TH

E
M

O
D
EL

Listing 13-3: The main method for running the program

1 importƒjavax.swing.JFrame;
2
3 /** Run the game of Nim. There is a (virtual) pile of tokens. Two players take turns
4 * ƒremoving 1, 2, or 3 tokens. The player who takes the last token wins the game.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒNim
8 {
9 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

10 ƒƒ{ƒNimModelƒmodelƒ=ƒnewƒNimModel();
11 ƒƒƒƒNimViewƒviewƒ=ƒnewƒNimView(model);
12
13 ƒƒƒƒJFrameƒfƒ=ƒnewƒJFrame("Nim");
14 ƒƒƒƒf.setSize(250,ƒ200);
15 ƒƒƒƒf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16 ƒƒƒƒf.setContentPane(view);
17 ƒƒƒƒf.setVisible(true);
18 ƒƒ}
19 }

ch13/nim
Infrastructure/

LOOKING BACK

Enumerations were
discussed in

Section 7.3.4.

The Player enumeration is shown in Listing 13-4, and the NimModel class is shown
in Listing 13-5. In NimModel, the only method (other than the constructors) that
changes the model’s state is removeTokens. After it has made its changes, it calls
updateAllViews at line 96 to inform the views that they should update the informa-
tion they display.

706
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

KEY IDEA

Call
updateAllViews
before returning from
a method that
changes the model.

Listing 13-4: The Player enumeration type

1 /** The players in the game of Nim, plus NOBODY to indicate situations where
2 * ƒneither player is applicable (for example, when no one has won the game yet).
3 *
4 * ƒ@author Byron Weber Becker */
5 publicƒenumƒPlayerƒ
6 {ƒRED,ƒBLACK,ƒNOBODY
7 }

ch13/nimOneView/

Listing 13-5: The completed NimModel class

1 importƒbecker.util.AbstractModel;
2 importƒbecker.util.Test;
3
4 /** A class implementing a version of Nim. There is a (virtual) pile of tokens. Two
5 *ƒ players take turns removing 1, 2, or 3 tokens. The player who takes the last token
6 *ƒ wins the game.
7 *
8 * @author Byron Weber Becker */
9 publicƒclassƒNimModelƒextendsƒAbstractModel

10 {ƒ// Extending AbstractModel is an easy way to implement the IModel interface.
11
12 ƒƒ// Limit randomly generated pile sizes and how many tokens can be removed at once.
13 ƒƒpublicƒstaticƒfinalƒintƒMIN_PILESIZEƒ=ƒ10;
14 ƒƒpublicƒstaticƒfinalƒintƒMAX_PILESIZEƒ=ƒ20;
15 ƒƒpublicƒstaticƒfinalƒintƒMAX_REMOVEƒ=ƒ3;ƒ
16
17 ƒƒprivateƒintƒpileSize;
18 ƒƒprivateƒPlayerƒwhoseTurn;
19 ƒƒprivateƒPlayerƒwinnerƒ=ƒPlayer.NOBODY;
20
21 ƒƒ/** Construct a new instance of the game of Nim. */
22 ƒƒpublicƒNimModel()
23 ƒƒ{ƒ// Call the other constructor to do the initialization.
24 ƒƒƒƒthis(NimModel.random(MIN_PILESIZE,ƒMAX_PILESIZE),
25 ƒƒƒƒƒƒƒƒƒNimModel.chooseRandomPlayer());
26 ƒƒ}

ch13/nimOneView/

707
13.3

B
U
ILD

IN
G

AN
D

T
ESTIN

G
TH

E
M

O
D
EL

Listing 13-5: The completed NimModel class (continued)

27
28 ƒƒ/** We need a way to create a nonrandom game for testing purposes. */
29 ƒƒprivateƒNimModel(intƒpileSize,ƒPlayerƒnext)
30 ƒƒ{ƒsuper();
31 ƒƒƒƒthis.pileSizeƒ=ƒpileSize;
32 ƒƒƒƒthis.whoseTurnƒ=ƒnext;
33 ƒƒ}
34
35 ƒƒ/** Generate a random number between two bounds. */
36 ƒƒprivateƒstaticƒintƒrandom(intƒlower,ƒintƒupper)
37 ƒƒ{ƒreturnƒ(int)(Math.random()*(upper-lower+1))ƒ+ƒlower;
38 ƒƒ}
39
40 ƒƒ/** Choose a player at random.
41 ƒƒ*ƒ@return Player.RED or Player.BLACK with 50% probability for each */
42 ƒƒprivateƒstaticƒPlayerƒchooseRandomPlayer()
43 ƒƒ{ƒifƒ(Math.random()ƒ<ƒ0.5)
44 ƒƒƒƒ{ƒreturnƒPlayer.RED;
45 ƒƒƒƒ}ƒelse
46 ƒƒƒƒ{ƒreturnƒPlayer.BLACK;
47 ƒƒƒƒ}
48 ƒƒ}
49
50 ƒƒ/** Get the current size of the pile.
51 ƒƒ*ƒ@return the current size of the pile */
52 ƒƒpublicƒintƒgetPileSize()
53 ƒƒ{ƒreturnƒthis.pileSize;
54 ƒƒ}
55
56 ƒƒ/** Get the next player to move.
57 ƒƒ*ƒ@return Either Player.RED or Player.BLACK if the game has not yet been won,
58 ƒƒ* ƒor Player.NOBODY if the game has been won. */
59 ƒƒpublicƒPlayerƒgetWhoseTurn()
60 ƒƒ{ƒreturnƒthis.whoseTurn;
61 ƒƒ}
62 ƒ
63 ƒƒ/** Get the winner of the game.
64 ƒƒ*ƒ@return Either Player.RED or Player.BLACK if the game has already been won;
65 ƒƒ*ƒPlayer.NOBODY if the game is still in progress. */
66 ƒƒpublicƒPlayerƒgetWinner()
67 ƒƒ{ƒreturnƒthis.winner;
68 ƒƒ}

708
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-5: The completed NimModel class (continued)

69
70 ƒƒ/** Is the game over?
71 ƒƒ*ƒ@return true if the game is over; false otherwise. */
72 ƒƒprivateƒbooleanƒgameOver()
73 ƒƒ{ƒreturnƒthis.pileSizeƒ==ƒ0;
74 ƒƒ}
75
76 ƒƒ/** Remove one, two, or three tokens from the pile. Ignore any attempts to take
77 ƒƒ*ƒtoo many or too few tokens. Otherwise, remove howMany tokens from the pile
78 ƒƒ*ƒand update whose turn is next.
79 ƒƒ*ƒ@param howMany How many tokens to remove.
80 ƒƒ*ƒ@throws IllegalStateException if the game has already been won */
81 ƒƒpublicƒvoidƒremoveTokens(intƒhowMany)
82 ƒƒ{ƒifƒ(this.gameOver())
83 ƒƒƒƒ{ƒthrowƒnewƒIllegalStateException(
84 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ"The game has already been won.");
85 ƒƒƒƒ}
86
87 ƒƒƒƒifƒ(this.isLegalMove(howMany))
88 ƒƒƒƒ{ƒthis.pileSizeƒ=ƒthis.pileSizeƒ-ƒhowMany;
89 ƒƒƒƒƒƒifƒ(this.gameOver())
90 ƒƒƒƒƒƒ{ƒthis.winnerƒ=ƒthis.whoseTurn;
91 ƒƒƒƒƒƒƒƒthis.whoseTurnƒ=ƒPlayer.NOBODY;
92 ƒƒƒƒƒƒ}ƒelse
93 ƒƒƒƒƒƒ{ƒthis.whoseTurnƒ=ƒ
94 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNimModel.otherPlayer(this.whoseTurn);
95 ƒƒƒƒƒƒ}
96 ƒƒƒƒƒƒthis.updateAllViews();ƒ
97 ƒƒƒƒ}ƒƒƒƒ
98 ƒƒ}
99

100 ƒƒ// Is howMany a legal number of tokens to take?
101 ƒƒprivateƒbooleanƒisLegalMove(intƒhowMany)
102 ƒƒ{ƒreturnƒhowManyƒ>=ƒ1ƒ&&ƒhowManyƒ<=ƒMAX_REMOVEƒ&&ƒ
103 ƒƒƒƒƒƒƒƒƒƒƒhowManyƒ<=ƒthis.pileSize;
104 ƒƒ}
105
106 ƒƒ// Return the other player.
107 ƒƒprivateƒstaticƒPlayerƒotherPlayer(Playerƒwho)
108 ƒƒ{ƒifƒ(whoƒ==ƒPlayer.RED)
109 ƒƒƒƒ{ƒreturnƒPlayer.BLACK;
110 ƒƒƒƒ}ƒelseƒifƒ(whoƒ==ƒPlayer.BLACK)
111 ƒƒƒƒ{ƒreturnƒPlayer.RED;

13.4 Building the View and Controllers

The view, of course, is what displays information from the model to the user. It is the
visible part of the user interface. The controllers are what make the interface interac-
tive. They listen for the user manipulating controls such as buttons or menus and then
make appropriate calls to the commands in the model.

13.4.1 Designing the Interface

Java comes with many user interface components including buttons, text fields, menus,
sliders, and labels. Some of these are shown in Figure 13-5. Designing an interface
includes deciding which of these components are most appropriate both to display the
model and to accept input from the user, and how to best arrange them on the screen.
For now, while we’re learning the basics, we will restrict ourselves to labels for dis-
playing information and text fields to accept input from the user. In Section 13.7, we
will explore other components.

709
13.4

B
U
ILD

IN
G

TH
E

V
IEW

AN
D

C
O
N
TRO

LLERS

Listing 13-5: The completed NimModel class (continued)

112 ƒƒƒƒ}ƒelse
113 ƒƒƒƒ{ƒthrowƒnewƒIllegalArgumentException();
114 ƒƒƒƒ}
115 ƒƒ}
116
117 ƒƒ// The addView, removeView, and updateAllViews methods could be included
118 ƒƒ// here. That isn't necessary in this case because NimModel extends AbstractModel.
119
120 ƒƒ/** Test the class. */
121 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
122 ƒƒ{ƒSystem.out.println("Testing NimModel");
123 ƒƒƒƒNimModelƒnimƒ=ƒnewƒNimModel(10,ƒPlayer.RED);
124 ƒƒƒƒTest.ckEquals("pile size",ƒ10,ƒnim.getPileSize());
125 ƒƒƒƒTest.ckEquals("winner",ƒPlayer.NOBODY,ƒnim.getWinner());
126 ƒƒƒƒTest.ckEquals("next",ƒPlayer.RED,ƒnim.getWhoseTurn());
127
128 ƒƒƒƒ/** ------ find the code to see complete test suite ------*/
129 ƒƒ}
130 }

KEY IDEA

The program shown
in Figure 13-5

contains lots of code
to help get you

started using
components.

Our first view will appear as shown in Figure 13-6. It shows the end of the game after
Red has won. The text areas (one has “2” in it, the other has “3”) are enabled when it’s
the appropriate player’s turn and disabled when it isn’t. When the game is over, both
are disabled, as shown here.

710
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-5)

Application demonstrating
many of the components
available for
constructing views

ch13/component
Demo/

(figure 13-6)

First view for the game
of Nim

13.4.2 Laying Out the Components

The components for any view can be divided into those that require ongoing access and
those that don’t. In this view, the following five components require ongoing access
either to change the information they display or to obtain changes made by the user.

! Two JTextFields to accept input from the players

! One JLabel showing the pile’s current size

! Two JLabels announcing the winner (they are not visible until there is a win-
ner, and even then only one is shown)

References to these objects will be stored in instance variables.

// Get how many tokens to remove.
privateƒJTextFieldƒredRemovesƒ=ƒnewƒJTextField(5);
privateƒJTextFieldƒblackRemovesƒ=ƒnewƒJTextField(5);

// Info to display.
privateƒJLabelƒpileSizeƒ=ƒnewƒJLabel();
privateƒJLabelƒredWinsƒ=ƒnewƒJLabel("Winner!");
privateƒJLabelƒblackWinsƒ=ƒnewƒJLabel("Winner!");

The components that do not require ongoing access include several JPanel objects
used to organize the components and the borders around them. Instance variables stor-
ing references to these components are not required.

These components are laid out using four nested JPanels, as shown in Figure 13-7.

2

Winner!

3

Winner!

blackRemoves is a JTextField.
blackWins is a JLabel to announce
when black wins (usually not visible).

black is a JPanel to group
blackRemoves and blackWins.

center is a JPanel to group the
panel for black and the panel for red.

pSize is a JPanel holding the label
displaying the pile’s current size.

The entire view is also a JPanel,
organized with a BorderLayout.

711
13.4

B
U
ILD

IN
G

TH
E

V
IEW

AN
D

C
O
N
TRO

LLERS

KEY IDEA

References to
components requiring

ongoing access are
stored in instance

variables.

LOOKING BACK

Layout managers
were discussed in

Section 12.6.

(figure 13-7)

NimView uses nested
JPanels to lay out the

components

The task of laying out the components occurs when the view is constructed and is usu-
ally complex enough to merit a helper method called from the constructor. We’ll call
the helper method layoutView, as shown in Listing 13-6. The method carries out the
following tasks:

! The first JPanel, named red, is defined in lines 12–15. It contains a
JTextField to accept information from the red player and a label to
announce if red is the winner. The JPanel itself is wrapped with a border to
label it in line 15.

! The second JPanel, black, is just like red except that it contains compo-
nents for the black player.

! The third JPanel, pSize, contains the label used to display the size of the
pile. It, too, has a border to label it.

! The fourth JPanel, center, is not directly visible in the user interface. It
exists solely to group the red and blackƒJPanels into a single component
that can be placed as a whole.

Finally, recall that NimView is itself a JPanel that can have its own layout manager. It
is set in line 36 to be a BorderLayout. Only two of the layout’s five areas are used, the
center and the south side. The center section grows and shrinks as its container is
resized. That’s where we put the center panel containing red and black. The south
area contains pSize.

Adding the layoutView method to NimView, as shown in Listing 13-6, and running
the program results in something that looks much like Figure 13-6. The pile size won’t
be displayed and both players will be declared winners. To display that information
correctly we need to update the view with information from the model.

712
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-6: A helper method to lay out the view for Nim

1 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
2 {ƒ// Instance variables omitted.
3
4 ƒƒpublicƒNimView(NimModelƒaModel)
5 ƒƒ{ƒ// Details omitted.
6 ƒƒƒƒthis.layoutView();
7 ƒƒ}
8
9 ƒƒ// Layout the view.

10 ƒƒprivateƒvoidƒlayoutView()
11 ƒƒ{ƒ// A panel for the red player.
12 ƒƒƒƒJPanelƒredƒ=ƒnewƒJPanel();
13 ƒƒƒƒred.add(this.redRemoves);
14 ƒƒƒƒred.add(this.redWins);

ch13/nimOneView/

13.4.3 Updating the View

The updateView method was already added when we set up the model and view
architecture, but it doesn’t do anything yet. It is called by the model each time the
model changes so that it can update the view’s components with current information.

For the moment, we want updateView to perform three basic tasks:

! Display the correct pile size.

! Enable the JTextField for the red player when it is the red player’s turn and
disable it otherwise, with similar behavior for the black player’s text field.
When a component is disabled, the players can’t use it, thus forcing each
player to take his or her turn at the right time.

713
13.4

B
U
ILD

IN
G

TH
E

V
IEW

AN
D

C
O
N
TRO

LLERS

Listing 13-6: A helper method to lay out the view for Nim (continued)

15 ƒƒƒƒred.setBorder(BorderFactory.createTitledBorder("Red"));
16
17 ƒƒƒƒ// A panel for the black player.
18 ƒƒƒƒJPanelƒblackƒ=ƒnewƒJPanel();
19 ƒƒƒƒblack.add(this.blackRemoves);
20 ƒƒƒƒblack.add(this.blackWins);
21 ƒƒƒƒblack.setBorder(BorderFactory.createTitledBorder("Black"));
22
23 ƒƒƒƒ// Pile size information.
24 ƒƒƒƒJPanelƒpSizeƒ=ƒnewƒJPanel();
25 ƒƒƒƒpSize.add(this.pileSize);
26 ƒƒƒƒpSize.setBorder(
27 ƒƒƒƒƒƒƒƒƒƒBorderFactory.createTitledBorder("Pile Size"));
28
29 ƒƒƒƒ// Group the red and black panels.
30 ƒƒƒƒJPanelƒcenterƒ=ƒnewƒJPanel();
31 ƒƒƒƒcenter.setLayout(newƒGridLayout(1,ƒ2));
32 ƒƒƒƒcenter.add(red);
33 ƒƒƒƒcenter.add(black);
34
35 ƒƒƒƒ// Lay out the pieces in this view.
36 ƒƒƒƒthis.setLayout(newƒBorderLayout());
37 ƒƒƒƒthis.add(center,ƒBorderLayout.CENTER);
38 ƒƒƒƒthis.add(pSize,ƒBorderLayout.SOUTH);
39 ƒƒ}
40 }

KEY IDEA

The updateView
method is responsible
for updating the view

with the latest
information from

the model.

! Make redWins visible when the red player wins the game and invisible when
it hasn’t, with similar behavior for blackWins.

Recall that the constructor received a reference to the model as a parameter. This refer-
ence was stored in an instance variable named, appropriately, model. We will use it to
retrieve the necessary information from the model to carry out these tasks.

Updating the Size of the Pile

The component to display the size of the pile is a JLabel. It has a method, setText,
which takes a string and causes the label to display it. Thus, we can update the pile size
display with the following statement:

this.pileSize.setText(""ƒ+ƒthis.model.getPileSize());

The result from getPileSize is an int. “Adding” it to the empty string forces Java
to convert it to a string, which is what setText requires.

If you run the program now, the user interface should show the pile size.

Updating the Text Fields

redRemoves is the name of the text field used by the red player to say how many
tokens to remove. To enable or disable it, we’ll use the setEnabled method, passing
true to enable the component and false to disable it. We want the text field enabled
when the following Boolean expression is true:

this.model.getWhoseTurn()ƒ==ƒPlayer.RED

If this expression is false (it’s not red’s turn), the component should be disabled. Thus,

this.redRemoves.setEnabled(
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.RED);

enables redRemoves when it’s the red player’s turn and disables it otherwise. Recall
that when the game is over, getWhoseTurn returns Player.NOBODY, resulting in both
text fields being disabled.

Updating the Winners

When the game is over, we want either redWins or blackWins to become visible. If
the game isn’t over, we want both to be invisible. Every component has a method
named setVisible that makes the component visible when passed the value true

714
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

715
13.4

B
U
ILD

IN
G

TH
E

V
IEW

AN
D

C
O
N
TRO

LLERS

LOOKING AHEAD

We will refine
updateView in

Section 13.4.5.

Listing 13-7: Updating the view with current information from the model

1 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
2 {ƒprivateƒNimModelƒmodel;
3 ƒƒprivateƒJTextFieldƒredRemovesƒ=ƒnewƒJTextField(5);
4 ƒƒ// Other instance variables, constructor, and methods omitted.
5
6 ƒƒ/** Called by the model when it changes. Update the information this view displays. */
7 ƒƒpublicƒvoidƒupdateView()
8 ƒƒ{ƒ// Update the size of the pile.
9 ƒƒƒƒthis.pileSize.setText(""ƒ+ƒthis.model.getPileSize());

10
11 ƒƒƒƒ// Enable and disable the text fields for each player.
12 ƒƒƒƒthis.redRemoves.setEnabled(
13 ƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.RED);
14 ƒƒƒƒthis.blackRemoves.setEnabled(
15 ƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.BLACK);
16
17 ƒƒƒƒ// Proclaim the winner, if there is one.
18 ƒƒƒƒthis.redWins.setVisible(
19 ƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.RED);
20 ƒƒƒƒthis.blackWins.setVisible(
21 ƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.BLACK);
22 ƒƒ}
23 }

and invisible when passed the value false. We can again use a simple Boolean expres-
sion to pass the correct value:

this.redWins.setVisible(
ƒƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.RED);

A similar statement for blackWins completes the method. Like getWhoseTurn,
getWinner can also return Player.NOBODY.

The entire method is shown in Listing 13-7. If you run the program with this method
completed, the user interface should display the initial pile size, one of the text fields
should be enabled (indicating who removes the first tokens), and neither player should
have their “Winner!” label showing. However, the game still can’t be played because
the components will not yet respond to the users.

ch13/nimOneView/

13.4.4 Writing and Registering Controllers

The fundamental job of a controller is to detect when a user is manipulating a compo-
nent and to respond in a way appropriate for the specific program. To best understand
how this happens, we need to delve into a simplified version of a component. All of the
Java components work similarly.

Understanding Events

For concreteness, let’s consider JTextField. A simplified version appears in Listing
13-8. The key feature is the handleEvent method. It detects various kinds of events
caused by the user, such as pressing the Enter key or using the Tab key to move either
into or out of the text field. Listing 13-8 uses pseudocode for detecting these actions
because we don’t really need to know how they are accomplished. Thanks to encapsu-
lation and information hiding, we can use the class without knowing those intimate
details.

What is important is that when one of these events occurs, two things happen. First,
the component constructs an event object describing the event and containing such
information as when the event occurred, if any keys were pressed at the time, and
which component created it.

Second, the component calls a specific method, passing the event object as an argu-
ment. This method is one that we write as part of our controller. It’s in this method that
we have an opportunity to take actions specific to our program, such as calling the
removeTokens method in the model.

716
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-8: A simplified version of JTextField

1 publicƒclassƒJTextFieldƒextendsƒ...
2 {ƒprivateƒActionListenerƒactionListener;
3 ƒƒprivateƒFocusListenerƒfocusListener;
4
5 ƒƒpublicƒvoidƒaddActionListener(ActionListenerƒaListener)
6 ƒƒ{ƒthis.actionListenerƒ=ƒaListener;
7 ƒƒ}
8
9 ƒƒpublicƒvoidƒaddFocusListener(FocusListenerƒfListener)

10 ƒƒ{ƒthis.focusListenerƒ=ƒfListener;
11 ƒƒ}
12
13 ƒƒprivateƒvoidƒhandleEvent()
14 ƒƒ{ƒifƒ(user pressed the ÒEnterÓ key)

Obviously, the method called has a name. That means that our controller must have
a method with the same name. Ensuring that it does is a perfect job for a Java inter-
face. The names ActionListener and FocusListener at lines 2, 3, 5, and 9 in
Listing 13-8 are, in fact, the names of Java interfaces. Our controllers will always
implement at least one interface whose name ends with Listener.

There are, unfortunately, two competing terminologies. “Controller” is a well-
established name for the part of a user interface that interprets events and calls the
appropriate commands in the model. Java uses the term listener for a class that is called
when an event occurs. Most of the time the two terms mean the same thing.

Implementing a Controller

When the user presses the Enter key inside a JTextField component, the component calls
a method named actionPerformed. This method is defined in the ActionListener
interface (and is, in fact, the only method defined there). It takes a single argument of type
ActionEvent. Therefore, the skeleton for our controller class will be:

importƒjava.awt.event.ActionListener;
importƒjava.awt.event.ActionEvent;

publicƒclassƒRemovesControllerƒextendsƒObjectƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener
{
ƒƒpublicƒvoidƒactionPerformed(ActionEventƒe)
ƒƒ{
ƒƒ}
}

717
13.4

B
U
ILD

IN
G

TH
E

V
IEW

AN
D

C
O
N
TRO

LLERS

KEY IDEA

In Java, controllers
implement methods
defined in interfaces

with names ending in
Listener.

KEY IDEA

In Java, we use
listener interfaces to

implement
controllers.

Listing 13-8: A simplified version of JTextField (continued)

15 ƒƒƒƒ{ƒconstruct an object, event, describing what happened
16 ƒƒƒƒƒƒthis.actionListener.actionPerformed(event);
17 ƒƒƒƒ}ƒelseƒifƒ(user tabbed out of this text field)
18 ƒƒƒƒ{ƒconstruct an object, event, describing what happened
19 ƒƒƒƒƒƒthis.focusListener.focusLost(event);
20 ƒƒƒƒ}ƒelseƒifƒ(user tabbed into this text field)
21 ƒƒƒƒ{ƒconstruct an object, event, describing what happened
22 ƒƒƒƒƒƒthis.focusListener.focusGained(event);
23 ƒƒƒƒ}ƒelseƒ
24 ƒƒƒƒƒƒ...
25 ƒƒ}
26 }

Inside actionPerformed, we need to obtain the value the user typed into the text field
and then call the model with that value. One approach is to have instance variables stor-
ing references to the text field and the model for the game. Then actionPerformed can
be written as

publicƒvoidƒactionPerformed(ActionEventƒe)
{ƒStringƒenteredTextƒ=ƒthis.textfield.getText();
ƒƒintƒremoveƒ=ƒconvert enteredText to an integer ;
ƒƒthis.model.removeTokens(remove);
}

The conversion from a string to an integer can be done with parseInt, a static
method in the Integer class. It will throw a NumberFormatException if the user
enters text that is not a valid integer. If this exception is thrown, we’ll recover in the
catch clause by selecting the entered text and ignoring what was entered.

The full method is shown in lines 21–29 of Listing 13-9. The rest of the listing, lines 11–19,
is simply declaring the instance variables needed and initializing them in a constructor.

718
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-9: A controller for a text field

1 importƒjavax.swing.JTextField;
2 importƒjava.awt.event.*;
3
4 /** A controller for the game of Nim that informs the model how many tokens a player
5 * wants to remove.
6 *
7 * @author Byron Weber Becker */
8 publicƒclassƒRemovesControllerƒextendsƒObjectƒ
9 ƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener

10 {
11 ƒƒprivateƒNimModelƒmodel;
12 ƒƒprivateƒJTextFieldƒtextfield;
13
14 ƒƒpublicƒRemovesController(NimModelƒaModel,ƒ
15 ƒƒƒƒƒƒƒƒƒƒƒƒƒJTextFieldƒaTextfield)
16 ƒƒ{ƒsuper();
17 ƒƒƒƒthis.modelƒ=ƒaModel;
18 ƒƒƒƒthis.textfieldƒ=ƒaTextfield;
19 ƒƒ}
20
21 ƒƒpublicƒvoidƒactionPerformed(ActionEventƒe)
22 ƒƒ{ƒtryƒ
23 ƒƒƒƒ{ƒintƒremoveƒ=ƒ
24 ƒƒƒƒƒƒƒƒƒƒƒƒƒInteger.parseInt(this.textfield.getText());
25 ƒƒƒƒƒƒthis.model.removeTokens(remove);

LOOKING AHEAD

Implementing
controllers can use a
number of shortcuts.
Some of them will
be explored in
Section 13.6,
Controller Variations.

ch13/nimOneView/

Registering Controllers

The very last step to make this user interface interactive is to construct the controllers
and register them with the text fields. Recall that the simplified version of JTextField
shown in Listing 13-8 contained methods such as addActionListener and
addFocusListener. They each took an instance of the similarly named interface and
saved it in an instance variable. Registering our controller simply means calling the
appropriate addXxxListener method for the relevant component, passing an
instance of the controller as an argument.

We’ve only written one controller class, but we’ll use one instance of it for the
redRemoves text field and a second instance for the blackRemoves text field. A user
interface often has several controllers, so it makes sense to have a helper method,
registerControllers, just for constructing and registering controllers. It is called
from the view’s constructor.

The code in Listing 13-10 registers the red controller in two steps but combines the
steps for the black controller.

719
13.4

B
U
ILD

IN
G

TH
E

V
IEW

AN
D

C
O
N
TRO

LLERS

KEY IDEA

A controller must be
registered with a

component.

Listing 13-10: A method registering the controllers with the appropriate components

1 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
2 {ƒ// Instance variables omitted.
3
4 ƒƒpublicƒNimView()
5 ƒƒ{ƒ// Some details omitted.
6 ƒƒƒƒthis.registerControllers();
7 ƒƒ}
8
9 ƒƒ/** Register controllers for the components the user can manipulate. */

10 ƒƒprivateƒvoidƒregisterControllers()
11 ƒƒ{ƒRemoveControllerƒredControllerƒ=ƒ
12 ƒƒƒƒƒƒƒƒnewƒRemoveController(this.model,ƒthis.redRemoves);
13 ƒƒƒƒthis.redRemoves.addActionListener(redController);

Listing 13-9: A controller for a text field (continued)

26 ƒƒƒƒ}ƒcatchƒ(NumberFormatExceptionƒex)ƒ
27 ƒƒƒƒ{ƒthis.textfield.selectAll();
28 ƒƒƒƒ}
29 ƒƒ}
30 }

If you run the program with these additions, you should be able to play a complete,
legal game, as shown in Figure 13-8.

a) The game begins with a pile of 10. Red
has the first turn.

b) Red takes two tokens; now it’s black’s
turn. The player must click in its text field
before entering a value.

c) Black takes three tokens. It’s red’s turn.
The “2” from red’s previous turn still shows.
Red does not need to click in its text field
before entering a value but must delete the
old value before entering a new one.

d) Red takes one token; now it’s black’s
turn. The 3 from the previous turn still
shows in the text field.

e) Black takes two tokens, setting up red for
a win.

f) Red takes two tokens and is proclaimed
the winner.

720
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-8)

User interface as it
appears at each stage of a
complete game

Listing 13-10: A method registering the controllers with the appropriate components (continued)

14
15 ƒƒƒƒthis.blackRemoves.addActionListener(
16 ƒƒƒƒƒƒƒnewƒRemoveController(this.model,ƒthis.blackRemoves));
17 ƒƒ}
18 }

13.4.5 Refining the View

The program runs, as shown in Figure 13-8. However, there are three areas in which
improvements could be made.

! The black user must click in its text field before entering a value. It would be
nice if the player could simply type a new value.

! The value previously entered by a player remains in the text field and must be
removed before entering a new value.

! Finally, the fonts used in the text fields and the JLabels are too small, given
their importance in the user interface.

Focus

In any given user interface, one component at most will receive input from the user’s
keyboard. This component is said to have the keyboard focus. Usually a component
will give some visible sign when it has the focus. A component that accepts text will
show a flashing bar called the insertion point. A button that has the focus will often
have a subtle box around its label.

Focus normally shifts from one component to the next in the order that they were
added to their container. In the case of Nim, however, the component that should have
the focus depends on whose turn it is. So, in the updateView method, we can update
which component has the focus with the following code. This code also replaces the
previously entered value with an empty string.

ifƒ(this.model.getWhoseTurn()ƒ==ƒPlayer.RED)
{ƒthis.redRemoves.requestFocusInWindow();
ƒƒthis.redRemoves.setText("");
}ƒelseƒifƒ(this.model.getWhoseTurn()ƒ==ƒPlayer.BLACK)
{ƒthis.blackRemoves.requestFocusInWindow();
ƒƒthis.blackRemoves.setText("");
}

Another approach is to write a controller class implementing the FocusListener
interface. It can detect when a component gains or loses focus. This is useful, for exam-
ple, if action needs to be taken when a user moves into or out of a component using
either the mouse or the keyboard.

Fonts

A larger font for the various components can be specified with the setFont method.
Its argument is a Font object describing the desired font. The following code could be
included in the layoutView method to change the font for the five components.

721
13.4

B
U
ILD

IN
G

TH
E

V
IEW

AN
D

C
O
N
TRO

LLERS

// Enlarge the fonts.
Fontƒfontƒ=ƒnewƒFont("Serif",ƒFont.PLAIN,ƒ24);
this.redRemoves.setFont(font);
this.blackRemoves.setFont(font);
this.redWins.setFont(font);
this.blackWins.setFont(font);
this.pileSize.setFont(font);

The first argument to the Font constructor specifies to use a font with serifs. Such fonts
have short lines at the ends of the main strokes of each letter. Common fonts that have
serifs include Times New Roman, Bookman, and Palatino. The string “SansSerif” can be
used to specify a font without serifs. Helvetica is a common sans serif font. The string
“monospaced” indicates a font using a fixed width for each letter. An example is Courier.

You can also specify an actual font name like “Helvetica” as the first argument.
However, you can’t be sure that the font is actually installed on the computer unless
you check. The program in Listing 13-11 will list all the names of all the fonts that are
installed. Try it for yourself to see which fonts are installed on your computer.

722
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-11: A program to list the names of fonts installed on a computer

1 importƒjava.awt.Font;
2 importƒjava.awt.GraphicsEnvironment;
3
4 /** List the font names available on the current computer system.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒListFontsƒextendsƒObject
8 {ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒGraphicsEnvironmentƒgeƒ=ƒ

10 ƒƒƒƒƒƒƒƒGraphicsEnvironment.getLocalGraphicsEnvironment();
11 ƒƒƒƒFont[]ƒnamesƒ=ƒge.getAllFonts();
12
13 ƒƒƒƒforƒ(Fontƒfƒ:ƒnames)
14 ƒƒƒƒ{ƒSystem.out.println(f.getName());
15 ƒƒƒƒ}
16 ƒƒ}
17 }

The second argument to the Font constructor is the style. There are three basic styles,
defined as constants in the Font class: PLAIN, ITALIC, and BOLD. ITALIC makes the let-
ters slant and BOLD makes the strokes thicker. A bold, italic font can also be specified by
adding the BOLD and ITALIC constants together and passing the result to the constructor.

ch13/fonts/

723
13.4

B
U
ILD

IN
G

TH
E

V
IEW

AN
D

C
O
N
TRO

LLERSListing 13-12: The completed code for the NimView class

1 importƒjavax.swing.JPanel;
2 importƒbecker.util.IView;
3 importƒjavax.swing.JTextField;
4 importƒjavax.swing.JLabel;
5 importƒjavax.swing.BorderFactory;
6 importƒjava.awt.GridLayout;
7 importƒjava.awt.BorderLayout;
8 importƒjava.awt.Font;
9

10 /** Provide a view of the game of Nim to a user.
11 *
12 *ƒ@author Byron Weber Becker */
13 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
14 {ƒ// The model implementing Nim's logic.
15 ƒƒprivateƒNimModelƒmodel;
16
17 ƒƒ// Get how many tokens to remove.
18 ƒƒprivateƒJTextFieldƒredRemovesƒ=ƒnewƒJTextField(5);
19 ƒƒprivateƒJTextFieldƒblackRemovesƒ=ƒnewƒJTextField(5);
20 ƒƒ
21 ƒƒ// Info to display.
22 ƒƒprivateƒJLabelƒpileSizeƒ=ƒnewƒJLabel();
23 ƒƒprivateƒJLabelƒredWinsƒ=ƒnewƒJLabel("Winner!");
24 ƒƒprivateƒJLabelƒblackWinsƒ=ƒnewƒJLabel("Winner!");
25
26 ƒƒ/** Construct the view.
27 ƒƒ*ƒ@param aModel The model we will be displaying. */
28 ƒƒpublicƒNimView(NimModelƒaModel)
29 ƒƒ{ƒsuper();
30 ƒƒƒƒthis.modelƒ=ƒaModel;
31
32 ƒƒƒƒthis.layoutView();
33 ƒƒƒƒthis.registerControllers();
34

The third argument to the Font constructor is the font’s size. The size is measured in
points, where one point is 1/72 of an inch. Ten to 12 points is a comfortable size for
reading; use 16 points or larger for labels and headlines.

This finishes our first view. The complete code is shown in Listing 13-12. Most com-
ponents have many other ways to refine the way they look. Investigating them further
falls outside the scope of this book. Exploring the documentation and method names
for the component, as well as its superclasses, will often indicate what can be done.

ch13/nimOneView/

724
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-12: The completed code for the NimView class (continued)

35 ƒƒƒƒthis.model.addView(this);
36 ƒƒƒƒthis.updateView();
37 ƒƒ}
38
39 ƒƒ/** Called by the model when it changes. Update the information this view displays. */
40 ƒƒpublicƒvoidƒupdateView()
41 ƒƒ{ƒthis.pileSize.setText(""ƒ+ƒthis.model.getPileSize());
42
43 ƒƒƒƒthis.redRemoves.setEnabled(
44 ƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.RED);
45 ƒƒƒƒthis.blackRemoves.setEnabled(
46 ƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.BLACK);
47 ƒƒƒƒthis.redWins.setVisible(
48 ƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.RED);
49 ƒƒƒƒthis.blackWins.setVisible(
50 ƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.BLACK);
51
52 ƒƒƒƒifƒ(this.model.getWhoseTurn()ƒ==ƒPlayer.RED)
53 ƒƒƒƒ{ƒthis.redRemoves.requestFocusInWindow();
54 ƒƒƒƒƒƒthis.redRemoves.setText("");
55 ƒƒƒƒ}ƒelseƒifƒ(this.model.getWhoseTurn()ƒ==ƒPlayer.BLACK)
56 ƒƒƒƒ{ƒthis.blackRemoves.requestFocusInWindow();
57 ƒƒƒƒƒƒthis.blackRemoves.setText("");
58 ƒƒƒƒ}
59 ƒƒ}
60
61 ƒƒ/** Layout the view. */
62 ƒƒprivateƒvoidƒlayoutView()
63 ƒƒ{ƒ// A panel for the red player
64 ƒƒƒƒJPanelƒredƒ=ƒnewƒJPanel();
65 ƒƒƒƒred.add(this.redRemoves);
66 ƒƒƒƒred.add(this.redWins);
67 ƒƒƒƒred.setBorder(BorderFactory.createTitledBorder("Red"));
68
69 ƒƒƒƒ// A panel for the black player
70 ƒƒƒƒJPanelƒblackƒ=ƒnewƒJPanel();
71 ƒƒƒƒblack.add(this.blackRemoves);
72 ƒƒƒƒblack.add(this.blackWins);
73 ƒƒƒƒblack.setBorder(BorderFactory.createTitledBorder("Black"));
74
75 ƒƒƒƒ// Pilesize info.
76 ƒƒƒƒJPanelƒpSizeƒ=ƒnewƒJPanel();

13.4.6 View Pattern

Views can be complex. However, they follow a common pattern, shown in Listing 13-13,
which makes them much easier to understand and implement.

725
13.4

B
U
ILD

IN
G

TH
E

V
IEW

AN
D

C
O
N
TRO

LLERS

Listing 13-12: The completed code for the NimView class (continued)

77 ƒƒƒƒpSize.add(this.pileSize);
78 ƒƒƒƒpSize.setBorder(
79 ƒƒƒƒƒƒƒƒƒƒBorderFactory.createTitledBorder("Pile Size"));
80
81 ƒƒƒƒ// Group the red and black panels.
82 ƒƒƒƒJPanelƒcenterƒ=ƒnewƒJPanel();
83 ƒƒƒƒcenter.setLayout(newƒGridLayout(1,ƒ2));
84 ƒƒƒƒcenter.add(red);
85 ƒƒƒƒcenter.add(black);
86
87 ƒƒƒƒ// Lay out the pieces in this view.
88 ƒƒƒƒthis.setLayout(newƒBorderLayout());
89 ƒƒƒƒthis.add(center,ƒBorderLayout.CENTER);
90 ƒƒƒƒthis.add(pSize,ƒBorderLayout.SOUTH);
91
92 ƒƒƒƒ// Enlarge the fonts.
93 ƒƒƒƒFontƒfontƒ=ƒnewƒFont("Serif",ƒFont.PLAIN,ƒ24);
94 ƒƒƒƒthis.redRemoves.setFont(font);
95 ƒƒƒƒthis.blackRemoves.setFont(font);
96 ƒƒƒƒthis.redWins.setFont(font);
97 ƒƒƒƒthis.blackWins.setFont(font);
98 ƒƒƒƒthis.pileSize.setFont(font);
99 ƒƒ}

100
101 ƒƒ/** Register controllers for the components the user can manipulate. */
102 ƒƒprivateƒvoidƒregisterControllers()
103 ƒƒ{ƒthis.redRemoves.addActionListener(
104 ƒƒƒƒƒƒƒƒnewƒRemovesController(this.model,ƒthis.redRemoves));
105 ƒƒƒƒthis.blackRemoves.addActionListener(
106 ƒƒƒƒƒƒnewƒRemovesController(this.model,ƒthis.blackRemoves));
107 ƒƒ}
108 }

13.5 Using Multiple Views

Now let’s implement a different user interface for the same game. Because the
NimModel class exhibits very low coupling with its first view (calling only the
updateView method via the IView interface), we will be able to replace the user inter-
face without changing NimModel at all.

Our new interface is illustrated in Figure 13-9. Instead of typing in the number of
tokens to remove, the user clicks the appropriate button. Like our previous interface,

726
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

KEY IDEA

One of the strengths
of the Model-View-
Controller pattern is
the low coupling
between the
various parts.

Listing 13-13: A pattern template for a view

1 importƒbecker.util.IView;
2 importƒjavax.swing.JPanel;
3 ÇlistÄofÄotherÄimportsÈ
4
5 publicƒclassƒÇviewNameÈƒextendsƒJPanelƒimplementsƒIView
6 {ƒprivateƒÇmodelClassNameÈ ƒmodel;
7
8 ÄÄÇcomponentÄdeclarationsÈ
9

10 ÄÄpublicƒÇviewNameÈ(ÇmodelClassNameÈ ƒaModel)
11 ƒƒ{ƒsuper();
12 ƒƒƒƒthis.modelƒ=ƒaModel;
13 ƒƒƒƒthis.layoutView();
14 ƒƒƒƒthis.registerControllers();
15 ƒƒƒƒthis.model.addView(this);
16 ƒƒƒƒthis.updateView();
17 ÄÄ}
18
19 ÄƒpublicƒvoidƒupdateView()
20 ƒƒ{ƒÇstatementsÄtoÄupdateÄtheÄcomponentsÄinÄtheÄviewÈ
21 ÄÄ}
22
23 ÄƒprivateƒvoidƒlayoutView()
24 ƒƒ{ƒÇstatementsÄtoÄlayÄoutÄtheÄcomponentsÄwithinÄtheÄviewÈ
25 Äƒ}
26
27 ƒƒprivateƒvoidƒregisterControllers()
28 ƒƒ{ƒÇstatementsÄtoÄconstructÄandÄregisterÄcontrollersÈ
29 ƒƒ}
30 }

components are disabled when they don’t apply. For example, the black player’s but-
tons are shown disabled, and when there are only 2 tokens remaining on the pile, the
“Remove 3 Tokens” button will be disabled for both players. Like our previous inter-
face, “Winner!” is displayed for the winning player at the appropriate time.

We could write this user interface as one big view, as we did previously. However, this
view has a total of nine components to manage, raising the overall complexity.
Furthermore, the four components for the red player are managed almost exactly like
those for the black player. This suggests that some good abstractions might simplify the
problem.

Recall that we wrote the model anticipating multiple views. The model has a list of
views, and each time the model’s state changes, it goes through that list and tells each
view to update itself. This allows us to decompose the overall view into a number of
subviews. Each subview will add itself to the model’s list of views and will have its
updateView method called at the appropriate times.

This version of the interface will use three subviews: one for the red player, one for the
black player, and one to display the pile size. NimView will still exist to organize the
three subviews.

Dividing the view into several subviews has two distinct advantages. First, each view
can focus on a smaller part of the overall job, allowing it to be simpler, easier to under-
stand, easier to write, and easier to debug. Second, subviews can be easily changed or
even replaced without fear of breaking the rest of the interface.

727
13.5

U
SIN

G
M

U
LTIPLE

V
IEW

S(figure 13-9)

Different user interface
for Nim

KEY IDEA

A view can
be partitioned into

subviews.

13.5.1 Implementing NimView

NimView is the overall view of the game. It is composed of the three subviews for the
players and the pile size. NimView does not (directly) display information about the
model nor does it (directly) update the model. Both of those tasks are delegated to the
subviews. NimView’s only task is to organize the subviews in a panel.

In the following ways, it is a degenerate view:

! It doesn’t need an instance variable storing a reference to the model.

! It doesn’t have any controllers to construct or register.

! It doesn’t need to register itself with the model.

As seen in Listing 13-14, all NimView does is instantiate and lay out the subviews.

728
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

ch13/nimMultiView/

Listing 13-14: NimView, a view consisting of three subviews

1 importƒjavax.swing.JPanel;
2 importƒjavax.swing.BorderFactory;
3 importƒjava.awt.GridLayout;
4 importƒjava.awt.BorderLayout;
5
6 /** Provide a view of the game of Nim to a user.
7 *
8 * @author Byron Weber Becker */
9 publicƒclassƒNimViewƒextendsƒJPanel

10 {
11 ƒƒ/** Construct the view.
12 ƒƒ* @param aModel The model we will be displaying. */
13 ƒƒpublicƒNimView(NimModelƒaModel)
14 ƒƒ{ƒsuper();
15
16 ƒƒƒƒ// Create the subviews.
17 ƒƒƒƒNimPlayerViewƒredƒ=ƒ
18 ƒƒƒƒƒƒƒƒƒƒnewƒNimPlayerView(aModel,ƒPlayer.RED);
19 ƒƒƒƒNimPlayerViewƒblackƒ=ƒ
20 ƒƒƒƒƒƒƒƒƒƒnewƒNimPlayerView(aModel,ƒPlayer.BLACK);
21 ƒƒƒƒNimPileViewƒpileƒ=ƒnewƒNimPileView(aModel);
22
23 ƒƒƒƒ// Put a title on each subview.
24 ƒƒƒƒred.setBorder(BorderFactory.createTitledBorder("Red"));
25 ƒƒƒƒblack.setBorder(BorderFactory.createTitledBorder("Black"));
26 ƒƒƒƒpile.setBorder(BorderFactory.createTitledBorder("Pile Size"));
27

13.5.2 Implementing NimPileView

The NimPileView class, shown in Listing 13-15, is a simple view. It does not need to
update the model, so there are no controllers. It only has a JLabel that is updated via
the updateView method. addView is called at line 17 to add this view to the model’s
list of views.

729
13.5

U
SIN

G
M

U
LTIPLE

V
IEW

S

Listing 13-14: NimView, a view consisting of three subviews (continued)

28 ƒƒƒƒ// Group the red and black views.
29 ƒƒƒƒJPanelƒcenterƒ=ƒnewƒJPanel();
30 ƒƒƒƒcenter.setLayout(newƒGridLayout(2,ƒ1));
31 ƒƒƒƒcenter.add(red);
32 ƒƒƒƒcenter.add(black);
33
34 ƒƒƒƒ// Lay out the pieces in this view.
35 ƒƒƒƒthis.setLayout(newƒBorderLayout());
36 ƒƒƒƒthis.add(center,ƒBorderLayout.CENTER);
37 ƒƒƒƒthis.add(pile,ƒBorderLayout.SOUTH);
38 ƒƒ}
39 }

ch13/nimMultiView/

Listing 13-15: The NimPileView class

1 importƒbecker.util.IView;
2 importƒjavax.swing.*;
3 importƒjava.awt.Font;
4
5 /** A view showing the current pile size for the game of Nim.
6 *
7 * @author Byron Weber Becker */
8 publicƒclassƒNimPileViewƒextendsƒJPanelƒimplementsƒIView
9 {ƒprivateƒNimModelƒmodel;

10 ƒƒprivateƒJLabelƒpileSizeƒ=ƒnewƒJLabel();
11
12 ƒƒ/** Construct the view. */
13 ƒƒpublicƒNimPileView(NimModelƒaModel)
14 ƒƒ{ƒsuper();
15 ƒƒƒƒthis.modelƒ=ƒaModel;
16 ƒƒƒƒthis.layoutView();
17 ƒƒƒƒthis.model.addView(this);
18 ƒƒƒƒthis.updateView();

13.5.3 Implementing NimPlayerView

NimPlayerView is a full-fledged view. It has its own components to lay out within
itself. Those components are used to update the model, so they need to have controllers
registered. The view also displays part of the state of the model—who’s turn it is and
who has won—and so it needs an updateView method and an instance variable to
store a reference to the model.

We’ll write NimPlayerView so that one instance of the class can be used for the red
player and a second instance for the black player. To meet this goal, it must store the
player it represents (lines 14 and 29 of Listing 13-16). The player is used in the
updateView method (lines 45 and 48) to determine which buttons to enable and
whether a winner should be declared.

The view has three buttons for user interaction. They all need to be added to the
view, be enabled and disabled as appropriate, and have controllers registered. These
tasks are all made easier by placing the buttons in an array (lines 16–20) and using
loops (lines 43–46, 58–61, and 69–72).

730
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-16: The NimPlayerView class

1 importƒbecker.util.IView;
2 importƒjavax.swing.JPanel;
3 importƒjavax.swing.JButton;
4 importƒjavax.swing.JLabel;
5 importƒjavax.swing.SwingConstants;

Listing 13-15: The NimPileView class (continued)

19 ƒƒ}
20
21 ƒƒ/** Update the view. Called by the model when its state changes. */
22 ƒƒpublicƒvoidƒupdateView()
23 ƒƒ{ƒthis.pileSize.setText(""ƒ+ƒthis.model.getPileSize());
24 ƒƒ}
25
26 ƒƒ/** Layout the view. */
27 ƒƒprivateƒvoidƒlayoutView()
28 ƒƒ{ƒthis.pileSize.setFont(newƒFont("Serif",ƒFont.PLAIN,ƒ24));
29 ƒƒƒƒthis.add(this.pileSize);
30 ƒƒ}
31 }

ch13/nimMultiView/

731
13.5

U
SIN

G
M

U
LTIPLE

V
IEW

S

Listing 13-16: The NimPlayerView class (continued)

6 importƒjava.awt.Font;
7 importƒjava.awt.GridLayout;
8
9 /** Provide a view of the game of Nim focused on one particular player to a user.

10 *
11 * @author Byron Weber Becker */
12 publicƒclassƒNimPlayerViewƒextendsƒJPanelƒimplementsƒIView
13 {ƒprivateƒNimModelƒmodel;
14 ƒƒprivateƒPlayerƒplayer;
15 ƒƒ
16 ƒƒprivateƒJButton[]ƒremoveButtonsƒ=ƒnewƒJButton[]ƒ{
17 ƒƒƒƒnewƒJButton("Remove 1 Token"),ƒ
18 ƒƒƒƒnewƒJButton("Remove 2 Tokens"),
19 ƒƒƒƒnewƒJButton("Remove 3 Tokens")
20 ƒƒ};
21 ƒƒprivateƒJLabelƒwinnerƒ=ƒnewƒJLabel("Winner!");
22
23 ƒƒ/** Construct a view for one player.
24 ƒƒ *ƒ@param aModel The game's model.
25 ƒƒ *ƒ@param player The player for which this is the view. */
26 ƒƒpublicƒNimPlayerView(NimModelƒaModel,ƒPlayerƒaPlayer)
27 ƒƒ{ƒsuper();
28 ƒƒƒƒthis.modelƒ=ƒaModel;
29 ƒƒƒƒthis.playerƒ=ƒaPlayer;
30
31 ƒƒƒƒthis.layoutView();
32 ƒƒƒƒthis.registerControllers();
33
34 ƒƒƒƒthis.model.addView(this);
35 ƒƒƒƒthis.updateView();
36 ƒƒ}
37
38 ƒƒ/** Update the view to reflect recent changes in the model's state. */
39 ƒƒpublicƒvoidƒupdateView()
40 ƒƒ{ƒPlayerƒwhoseTurnƒ=ƒthis.model.getWhoseTurn();
41 ƒƒƒƒintƒpSizeƒ=ƒthis.model.getPileSize();
42 ƒƒƒƒ// Enable buttons if it's my player's turn and there are enough tokens on the pile.
43 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)
44 ƒƒƒƒ{ƒthis.removeButtons[i].setEnabled(
45 ƒƒƒƒƒƒƒƒƒƒwhoseTurnƒ==ƒthis.playerƒ&&ƒiƒ+ƒ1ƒ<=ƒpSize);
46 ƒƒƒƒ}
47 ƒƒƒƒthis.winner.setVisible(
48 ƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒthis.player);

Like JTextField, JButton objects use an ActionListener. When the button is
clicked, it calls the actionPerformed method for all the listeners that have been
added. Recall that it is inside the actionPerformed method that we specify the code
to execute when the button is clicked. This is where we call the removeTokens
method in the model.

In our previous controller the user typed the number of tokens to remove from the pile.
We need a different way to find out how many tokens to remove. One approach is to
have a separate controller object for each button. The controller has an instance vari-
able that remembers how many tokens to remove. That instance variable is set, of
course, when the controller is constructed. We can see this at line 71 of Listing 13-16,
where a new controller is instantiated for each button.

The revised controller class is shown in Listing 13-17.

732
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-16: The NimPlayerView class (continued)

49 ƒƒ}
50
51 ƒƒ/** Lay out the components for this view. */
52 ƒƒprivateƒvoidƒlayoutView()
53 ƒƒ{ƒGridLayoutƒgridƒ=ƒnewƒGridLayout(4,ƒ1,ƒ5,ƒ5);
54 ƒƒƒƒthis.setLayout(grid);
55
56 ƒƒƒƒFontƒfontƒ=ƒnewƒFont("Serif",ƒFont.PLAIN,ƒ24);
57
58 ƒƒƒƒforƒ(JButtonƒbƒ:ƒthis.removeButtons)
59 ƒƒƒƒ{ƒthis.add(b);
60 ƒƒƒƒƒƒb.setFont(font);
61 ƒƒƒƒ}
62
63 ƒƒƒƒthis.winner.setFont(font);
64 ƒƒƒƒthis.add(this.winner);
65 ƒƒ}
66
67 ƒƒ/** Register controllers for this view's components. */
68 ƒƒprivateƒvoidƒregisterControllers()
69 ƒƒ{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)
70 ƒƒƒƒ{ƒthis.removeButtons[i].addActionListener(
71 ƒƒƒƒƒƒƒƒƒƒnewƒRemoveButtonController(this.model,ƒiƒ+ƒ1));
72 ƒƒƒƒ}
73 ƒƒ}
74 }

13.5.4 Sequence Diagrams

Removing a token involves six interacting classes. This is a level of complexity that we
haven’t seen before, but it is not uncommon. To keep things in perspective, it’s impor-
tant to think locally. For each method, we can ask, what is the job that this method has
to do? What services does it need from other classes to do that job?

But a global perspective can help, too. Figure 13-10 is a sequence diagram that can help
visualize the objects involved in removing a token and the sequence of actions taking place.

733
13.5

U
SIN

G
M

U
LTIPLE

V
IEW

S

Listing 13-17: The controller for the JButtons used to remove tokens

1 importƒjava.awt.event.*;
2
3 /** A controller to remove tokens from the game of Nim.
4 *
5 *ƒ@author Byron Weber Becker */
6 publicƒclassƒRemoveButtonControllerƒextendsƒObjectƒ
7 ƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener
8 {
9 ƒƒprivateƒNimModelƒmodel;

10 ƒƒprivateƒintƒnumRemove;
11
12 ƒƒ/** Construct an instance of the cotroller.
13 ƒƒ*ƒ@param aModel The model this controls.
14 ƒƒ*ƒ@param howMany How many tokens to remove when the button is clicked. */
15 ƒƒpublicƒRemoveButtonController(NimModelƒaModel,ƒintƒhowMany)
16 ƒƒ{ƒsuper();
17 ƒƒƒƒthis.modelƒ=ƒaModel;
18 ƒƒƒƒthis.numRemoveƒ=ƒhowMany;
19 ƒƒ}
20
21 ƒƒ/** Remove the right number of tokens from the model. */
22 ƒƒpublicƒvoidƒactionPerformed(ActionEventƒevt)
23 ƒƒ{ƒthis.model.removeTokens(this.numRemove);
24 ƒƒ}
25 }

ch13/nimMultiView/

The six objects involved are shown at the top of the diagram, each with their class
name. In the case of NimPlayerView there are two, so we distinguish between the
instance for the red player and the instance for the black player. There are six JButton
objects, but it isn’t important to distinguish between them, so only one is shown.

The dashed line extending down from each object is its lifeline. In a complete sequence
diagram, the lifeline would begin with the object’s construction and end when the
object is no longer needed. The boxes along the lifeline represent a method executing in
that object. The solid arrows between the boxes represent one method calling another.
A dashed arrow with an open arrowhead represents a method finishing execution and
returning to its caller.

Putting all this together, the diagram begins in the upper-left corner with the
handleEvent method in JButton being called, presumably because the user clicked

NimPlayerView
(red)

NimPlayerView
(black)

Controller NimModelJButton

handle-
Event

remove-
Tokens

updateAllViews

update-
View
get...

get...

updateView

getWhoseTurn

getPileSize

updateView

getPileSize

action-
Performed

NimPileView

734
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-10)

Sequence diagram of the
actions involved in
removing tokens and
updating the views

the button. handleEvent calls the actionPerformed method in the controller. We
can think of the actionPerformed method as executing for quite a while—all the
time that it takes to call removeTokens, including the calls that removeTokens
makes. This length of time is represented by the length of the box on the controller’s
lifeline.

On the lifeline for NimModel, we see that the longest box, corresponding to
removeTokens, calls a helper method in the same class, updateAllViews. This
helper method calls all the updateView methods in the views registered with
NimModel. Each of these, of course, calls additional methods.

By the time execution returns to the handleEvent method in JButton at the bottom-
left corner of the diagram, tokens have been removed from the model and all of the
views have been updated accordingly.

13.6 Controller Variations

Three techniques are often used to simplify writing controllers. One nests the con-
troller class inside the view’s class. The second makes use of information passed in the
event objects. The third is a shortcut often taken in sample code in other books and on
the Internet.

13.6.1 Using Inner Classes

An inner class is a class that is nested inside another class.2 Inner classes are most use-
ful for defining small helper classes that are very specific to a particular task. By plac-
ing inner classes inside the class they are helping, we can make that relationship more
explicit and keep the definition of the helper class very close to the class it is helping.
Beyond this, the primary advantage of an inner class is that it can access the methods
and instance variables of its enclosing class—even the private methods and instance
variables.

Views are usually written with inner classes for the controllers.

Listing 13-18 shows the NimPlayerView (Listing 13-16) and
RemoveButtonController (Listing 13-17) combined in a single file by making the
controller an inner class.

735
13.6

C
O
N
TRO

LLER
V

ARIATIO
N
S

KEY IDEA

An inner class can
access instance

variables and
methods of its

enclosing class.

2 There are actually four varieties of inner classes. We will focus on member classes. The other three
are nested top-level classes, local classes, and anonymous classes.

The first thing to notice about Listing 13-18 is that RemoveButtonController falls
between the opening and closing braces of theƒNimPlayerView class. The actual
order of instance variables, methods, and inner classes within the outer class doesn’t
matter to the compiler, but inner classes are generally placed at the end.

736
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-18: Using an inner class for a view’s controller

1 // Import classes needed by both view and controller.
2 publicƒclassƒNimPlayerViewƒextendsƒJPanelƒimplementsƒIView
3 {ƒprivateƒNimModelƒmodel;
4
5 ƒƒ// Other instance variables, constructor, updateView, and layoutView are omitted.
6
7 ƒƒprivateƒvoidƒregisterControllers()
8 ƒƒ{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)
9 ƒƒƒƒ{ƒthis.removeButtons[i].addActionListener(

10 ƒƒƒƒƒƒƒƒƒƒnewƒRemoveButtonController(i+1));
11 ƒƒƒƒ}
12 ƒƒ}
13
14 ƒƒ// Inner class for the controllers to remove tokens from the pile.
15 ƒƒprivateƒclassƒRemoveButtonControllerƒextendsƒObject
16 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener
17 ƒƒ{ƒprivateƒintƒnumRemove;
18
19 ƒƒƒƒpublicƒRemoveButtonController(intƒhowMany)
20 ƒƒƒƒ{ƒsuper();
21 ƒƒƒƒƒƒthis.numRemoveƒ=ƒhowMany;
22 ƒƒƒƒ}
23
24 ƒƒƒƒpublicƒvoidƒactionPerformed(ActionEventƒevt)
25 ƒƒƒƒ{ƒNimPlayerView.this.model.removeTokens(this.numRemove);
26 ƒƒƒƒ}
27 ƒƒ}
28 }

KEY IDEA

An inner class is
placed inside another
class, but outside of
all methods.

Second, the inner class accesses the model instance variable from the outer class at line 25.
The syntax for doing so is a little odd. We cannot write this.model because then we
would be referring to an instance variable in the RemoveButtonController class. To
access the outer class, first give the name of that class and then access the variable as usual.
It is also possible to write the following and let the compiler figure it out:

model.removeTokens(this.numRemove);

For clarity, however, we will always write the longer version.

ch13/nimInnerClass/

Third, because the inner class can access the model via the outer class, the model
instance variable has disappeared along with code in the constructor to initialize it.
The argument is also omitted when the constructor is called in line 10.

Each instance of the inner class is tied to a specific instance of the outer class. For
example, the game creates two instances of NimPlayerView, one for the red player
and one for the black player. Both of these objects create three controllers. The con-
trollers created for red’s instance of the view are forever tied to that instance. They will
access the methods and instance variables in red’s instance of the view and will never
access those in black’s instance.

13.6.2 Using Event Objects

The actionPerformed method is always passed an ActionEvent object which pro-
vides more details about the user’s action. All of the methods in all of the listener inter-
faces have an event object as a parameter.

One of the most useful items of information in an event object is the source of the
event—that is, which component was manipulated by the user. Using that information,
we can figure out how many tokens to remove without using an instance variable in
the controller class. We’ll simply compare the source to each JButton in the array.
When we have a match, we’ll know how many tokens to remove.

With this approach, the controller will have no instance variables at all. This has two
implications. First, there are no instance variables to initialize, and we can let Java provide
a default constructor for us.3 Second, every instance is just like all the other instances, and
we can use the same controller for all three buttons. Listing 13-19 shows how.

737
13.6

C
O
N
TRO

LLER
V

ARIATIO
N
S

KEY IDEA

Use event objects to
obtain more

information about the
event and the source

that generated it.

Listing 13-19: A controller that uses the event object to avoid instance variables

1 // Import classes needed by both view and controller.
2 publicƒclassƒNimPlayerViewƒextendsƒJPanelƒimplementsƒIView
3 {ƒprivateƒNimModelƒmodel;
4 ƒƒprivateƒJButton[]ƒremoveButtonsƒ=ƒnewƒJButton[]ƒ
5 ƒƒ{ƒnewƒJButton("Remove 1 Token"),ƒ
6 ƒƒƒƒnewƒJButton("Remove 2 Tokens"),
7 ƒƒƒƒnewƒJButton("Remove 3 Tokens")
8 ƒƒ};
9

10 ƒƒ// Other instance variables, constructor, updateView, and layoutView are omitted.

ch13/nimInnerClass/

3 Omitting the parameterless or default constructor is an option for every class, but we have always
included it, when applicable, for clarity. Controllers are usually so small and specialized, however,
that we can omit them without loss of clarity.

738
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-19: A controller that uses the event object to avoid instance variables (continued)

11
12 ƒƒ/** Register controllers for this view's components. */
13 ƒƒprivateƒvoidƒregisterControllers()
14 ƒƒ{ƒRemoveButtonControllerƒcontrollerƒ=ƒ
15 ƒƒƒƒƒƒƒƒƒƒnewƒRemoveButtonController();
16 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)
17 ƒƒƒƒ{ƒthis.removeButtons[i].addActionListener(controller);
18 ƒƒƒƒ}
19 ƒƒ}
20
21 ƒƒprivateƒclassƒRemoveButtonControllerƒextendsƒObject
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener
23 ƒƒ{ƒpublicƒvoidƒactionPerformed(ActionEventƒevt)
24 ƒƒƒƒ{ƒJButtonƒsrcƒ=ƒ(JButton)evt.getSource();
25 ƒƒƒƒƒƒifƒ(srcƒ==ƒremoveButtons[0])
26 ƒƒƒƒƒƒ{ƒmodel.removeTokens(1);
27 ƒƒƒƒƒƒ}ƒelseƒifƒ(srcƒ==ƒremoveButtons[1])
28 ƒƒƒƒƒƒ{ƒmodel.removeTokens(2);
29 ƒƒƒƒƒƒ}ƒelseƒifƒ(srcƒ==ƒremoveButtons[2])
30 ƒƒƒƒƒƒ{ƒmodel.removeTokens(3);
31 ƒƒƒƒƒƒ}ƒelse
32 ƒƒƒƒƒƒ{ƒassertƒfalse;ƒƒƒƒƒƒƒƒ// Shouldn't happen!
33 ƒƒƒƒƒƒ}
34 ƒƒƒƒ}
35 ƒƒ}
36 }

Note in line 24 that the getSource method returns an Object which must be cast to
an appropriate type. The source itself will often have useful information. For example,
if it were a text field, we could get the text typed by the user.

The cascading-if structure in lines 25–33 is fine for a small number of components,
but if the components are stored in an array, a loop can be more concise, as follows:

publicƒvoidƒactionPerformed(ActionEventƒevt)
{ƒJButtonƒsrcƒ=ƒ(JButton)evt.getSource();
ƒƒintƒiƒ=ƒ0;
ƒƒwhileƒ(removeButtons[i]ƒ!=ƒsrc)
ƒƒ{ƒi++;
ƒƒ}
ƒƒassertƒremoveButtons[i]ƒ==ƒsrc;
ƒƒmodel.removeTokens(i+1);
}

13.6.3 Integrating the Controller and View

The controller and view can also be integrated into the same class without the use of an
inner class. Many examples on the Web use this approach because it is quick and easy.
It introduces a significant disadvantage, however, in that there is only one controller
for all of the various components. With the previous techniques, you can easily write
one controller for a JButton and a different controller for a JTextField. Each con-
troller has its own actionPerformed method that is specific to a particular task.
When the controller and view are integrated, a single actionPerformed method must
handle both components. In terms of the software engineering principles studied in
Section 11.3.2, such integration reduces the cohesion of the methods (recall that we
want high cohesion). Nevertheless, the technique is shown here so that you can under-
stand it if and when you see it.

The technique works by implementing the required interfaces in the view class itself. In
Listing 13-20, the ActionListener interface is listed on the class header (lines 2–3)
and its only method, actionPerformed, is implemented at lines 14–23 just like any
other method. Note that there is no inner class. The “controller” is registered with the
JButton objects in line 10. Instead of constructing a separate object, a reference to the
view itself (that is, this) is passed to the button.

739
13.6

C
O
N
TRO

LLER
V

ARIATIO
N
S

KEY IDEA

This is not a
recommended

approach, but its use
is widespread.

Listing 13-20: A version of NimPlayerView that integrates the view and the controller

1 // Import classes needed by both view and controller.
2 publicƒclassƒNimPlayerViewƒextendsƒJPanelƒ
3 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒIView,ƒActionListener
4 {ƒ
5 ƒƒ// Other instance variables, constructor, updateView, and layoutView are omitted.
6
7 ƒƒ/** Register controllers for this view's components. */
8 ƒƒprivateƒvoidƒregisterControllers()
9 ƒƒ{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)

10 ƒƒƒƒ{ƒthis.removeButtons[i].addActionListener(this);
11 ƒƒƒƒ}
12 ƒƒ}
13
14 ƒƒpublicƒvoidƒactionPerformed(ActionEventƒevt)
15 ƒƒ{ƒJButtonƒsrcƒ=ƒ(JButton)evt.getSource();
16
17 ƒƒƒƒintƒiƒ=ƒ0;
18 ƒƒƒƒwhileƒ(removeButtons[i]ƒ!=ƒsrc)
19 ƒƒƒƒ{ƒi++;
20 ƒƒƒƒ}
21 ƒƒƒƒassertƒremoveButtons[i]ƒ==ƒsrc;

ch13/nimIntegrated/

13.7 Other Components

So far, we have only worked with JTextField and JButton components. But there
are many more components, too many to cover in a book such as this. So how can you
learn to use them? Use the following strategies:

! Discover what components are available and might be applicable

! Identify the listeners used

! Skim the documentation

! Begin with sample code

! Work incrementally

In the following sections, we’ll use these strategies to learn how to display a set of color
names to use in Nim instead of “Red” and “Black”.

13.7.1 Discover Available Components

There are several ways to discover available components. One is to look at “A Visual
Index to the Swing Components,” which can be found at http://java.sun.com/docs/books/
tutorial/uiswing/components/components.html. It shows a sample of each component
and has links to documentation where you can learn more. Figure 13-11 shows a part
of the Web page that looks promising. It appears that at least two kinds of components
can display lists of color names, as we would like to do.

Clicking the links labeled “Combo box” and “List” leads to pages titled “How to Use
Combo Boxes” and “How to Use Lists.” The first page refers to the component
JComboBox, and the second page refers to JList.

740
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-20: A version of NimPlayerView that integrates the view and the controller (continued)

22 ƒƒƒƒmodel.removeTokens(i+1);
23 ƒƒ}
24 }

Another option is to find one of several demonstration programs available. One that
comes with this textbook is shown in Figure 13-5. If you have downloaded the exam-
ple code for the textbook, you’ll find the code in the directory ch13/componentDemo.
Running the program and playing with the components will show that JSpinner is
also a possibility. In Figure 13-5, it displays “Sunday,” but it also “spins” through the
other days of the week. It could also spin through the color names we want to display.

Any of these options could work for us. Choosing between them is largely a matter of
personal taste. For now, we’ll choose JList.

13.7.2 Identify Listeners

When we identify the listeners for a component, we identify what kind of events it can
tell us about and therefore what kind of controllers we can write. Every component
may have the following six kinds of listeners:

! Component listeners listen for changes in the component’s size, position, or
visibility. Component listeners have methods like componentHidden,
componentResized, and componentMoved.

! Focus listeners listen for the component gaining or losing the ability to receive
keyboard input. Focus listeners have two methods, focusGained and
focusLost.

! Key listeners listen for key press events. Such events are fired only by the com-
ponent that has the keyboard focus. Key listeners have keyPressed,
keyReleased, and keyTyped methods.

! Mouse listeners listen for mouse clicks and the mouse moving into and out of
the component’s drawing area. Mouse listeners have five methods, including
mouseEntered and mouseClicked.

! Mouse motion listeners listen for changes in the cursor’s position within the com-
ponent. Such listeners have two methods, mouseMoved and mouseDragged.

! Mouse wheel listeners listen for mouse wheel movement over the component.
They have a single method, mouseWheelMoved.

741
13.7

O
TH

ER
C

O
M

PO
N
EN

TS

(figure 13-11)

Part of “A Visual Index to
the Swing Components”

In addition to these six listeners, components have one or more additional listeners
that vary by component type. For example, we have already seen that JTextField
and JButton objects can have ActionListeners.

A complete table of components and listeners is maintained by the creators of Java at
http://java.sun.com/docs/books/tutorial/uiswing/events/eventsandcomponents.html.
This table is summarized in Figure 13-12. Looking at the list, we can tell that the JList
component uses a ListSelectionListener and one or more unspecified listeners.

Another approach is to look at the documentation for the component at
http://java.sun.com/j2se/1.5.0/docs/api/. For example, find JList in the left side and click
on it. Scroll down to the list of methods and look for methods named addXxxx Listener,
where the Xxxx can vary. JList has an addListSelectionListener method.

JButton

JCheckBox

JColorChooser

JComboBox

JDialog

JEditorPane

JFileChooser

JFormattedTextField

JFrame

JList

JMenu

JMenuItem

JPasswordField

JPopupMenu

JProgressBar

JRadioButton

JSlider

JSpinner

JTabbedPane

JTable

JTextArea

JTextField

JToggleButton

JTree

Ac
tio

nL
ist

en
er

Ca
ret

Lis
ten

er

Ch
an

ge
Lis

ten
er

Do
cu

men
tLi

ste
ne

r

Ite
mLis

ten
er

Component Lis
tSe

lec
tio

nL
ist

en
er

Wind
ow

Lis
ten

er

Ot
he

r

742
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-12)

Listeners used by some of
Java’s GUI components

The documentation for ListSelectionListener says the interface specifies a single
method, valueChanged. This is the method that our controller for JList will need to
implement.

13.7.3 Skim the Documentation

There are two primary sources of information for working with Java’s GUI compo-
nents: the API documentation and the Java Tutorial.

Application Programming Interface (API) Documentation

One primary source of information is the API, or application programming interface,
documentation. It is the class-by-class documentation found at http://java.sun.com/
j2se/1.5.0/docs/api/. The documentation for each class gives an overview of the class,
its inheritance hierarchy, a list of the constructors provided, and a list of the methods
provided, including detailed descriptions of what they do.

The first time you use a component, skim this documentation looking for methods that
sound useful. There may be lots of them—don’t get overwhelmed. For JList, the doc-
umentation lists about 70 methods, plus the 344 methods it inherits from its super-
classes.

What’s important when getting started using a JList? Constructing the component,
adding items to display in the list, adding a listener, and finding out which item on the
list was selected. Skimming the documentation for methods that sound relevant yields
the following:

! JList(): constructs an empty JList

! JList(Object[]ƒlistData): constructs a JList that displays the ele-
ments in the specified array

! addListSelectionListener: adds a listener to the JList

! getSelectedIndex: returns the index of the first selected item; if nothing is
selected, it returns -1

! getSelectedIndicies: returns an array of all the selected indices

! getSelectedValue: returns the first selected value

These methods answer most of our questions. We might have expected to find an “add
item” method to add items to the list, but we didn’t. Instead, it appears that we pass an
array of items to display when the component is constructed. It also appears that several
items can be selected at one time. We may want to make note of that for future reference.

743
13.7

O
TH

ER
C

O
M

PO
N
EN

TS

KEY IDEA

The API
documentation

provides full details
about each class.

The Java Tutorial

The Java Tutorial at http://java.sun.com/docs/books/tutorial/ provides a wealth of practical
examples for creating graphical user interfaces. Particularly relevant is the “Creating a GUI
with JFC/Swing” chapter. It contains sections such as “Learning Swing by Example,”
“Using Swing Components,” and “Writing Event Listeners.” One subsection, at
http://java.sun.com/docs/books/tutorial/uiswing/components/componentlist.html, contains
a long list of topics with names like “How to Make Applets” and “How to Use Lists.” The
API documentation often provides direct links to these sections of the tutorial.

Clicking the “How to Use Lists” link opens a document that includes sample code and
sections titled “Initializing a List,” “Selecting Items in a List,” and “Adding Items to
and Removing Items from a List.” All sound helpful!

13.7.4 Begin with Sample Code

Building on the discoveries of someone else is always easier than starting from scratch.
When learning to use a new component, look for sample code using it. The Java
Tutorial is a good place to look, particularly in the “How to…” sections referenced
earlier.

Another source for sample code that matches the style presented in this textbook is the
componentDemo program shown in Figure 13-5. If you run the program and click an
element in the JList, an entry is added to the table at the bottom of the frame. The
view column says “ListView.” This is the name of the class containing the JList. The
second column, “Listener,” says “ListView$ListController.” That’s the name of the
controller class that handled your mouse click—the ListController class that is an
inner class within the ListView class.

Open the source for ListView and you’ll find the code constructing the JList, laying it
out within a view, and registering a controller, as well as the code for the controller itself.
Much of this code can be cut and pasted directly into the program you’re writing.

13.7.5 Work Incrementally

The last piece of advice is to work incrementally. Start with small goals for the compo-
nent. Meet those goals and then move on to more ambitious goals. For example, you
might begin by displaying the JList in a view. Listing 13-21 shows a minimal view
with the goal of showing a JList with the names of some colors and detecting when
one has been selected.

744
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

KEY IDEA

The Java Tutorial
contains lots of
sample code.

745
13.7

O
TH

ER
C

O
M

PO
N
EN

TS

ch13/usingJList/

Listing 13-21: A simple view to display a list of colors and detect when one is selected

1 importƒbecker.util.IView;
2 importƒjavax.swing.JPanel;
3 importƒjavax.swing.JList;
4 importƒjavax.swing.event.ListSelectionEvent;
5 importƒjavax.swing.event.ListSelectionListener;
6
7 publicƒclassƒViewƒextendsƒJPanelƒimplementsƒIView
8 {ƒ// private Object model;
9 ƒƒprivateƒJListƒlist;

10
11 ƒƒpublicƒView(ObjectƒaModel)
12 ƒƒ{ƒsuper();
13 ƒƒƒƒ// this.model = aModel;
14 ƒƒƒƒthis.layoutView();
15 ƒƒƒƒthis.registerControllers();
16 ƒƒƒƒ// this.model.addView(this);
17 ƒƒƒƒthis.updateView();
18 ƒƒ}
19
20 ƒƒpublicƒvoidƒupdateView()
21 ƒƒ{// Statements to update the components in the view.
22 ƒƒ}
23
24 ƒƒprivateƒvoidƒlayoutView()
25 ƒƒ{ƒthis.listƒ=ƒnewƒJList(newƒString[]ƒ{"Red",ƒ"Green",ƒ"Blue",
26 ƒƒƒƒƒƒƒƒƒƒ"Yellow",ƒ"Orange",ƒ"Pink",ƒ"Black"});
27 ƒƒƒƒthis.add(this.list);
28 ƒƒ}
29
30 ƒƒprivateƒvoidƒregisterControllers()
31 ƒƒ{ƒthis.list.addListSelectionListener(
32 ƒƒƒƒƒƒƒƒƒƒnewƒListController());
33 ƒƒ}
34
35 ƒƒprivateƒclassƒListControllerƒextendsƒObjectƒ
36 ƒƒƒƒƒƒƒƒƒƒimplementsƒListSelectionListener
37 ƒƒ{ƒpublicƒvoidƒvalueChanged(ListSelectionEventƒevt)
38 ƒƒƒƒ{ƒSystem.out.println(
39 ƒƒƒƒƒƒƒƒƒƒ"selected "ƒ+ƒView.this.list.getSelectedValue());
40 ƒƒƒƒ}
41 ƒƒ}
42 }

Running a program that places this view in a frame appears as shown in Figure 13-13
and proves that we have made significant progress. The list shows the seven colors and
it prints a message when one is selected. However, there are two problems. First, each
time a color is selected, two copies of the message are printed by the controller. Second,
the list has no scroll bars. If the window is made smaller than the list, part of the list
simply disappears.

For the first problem, it seems like the ListSelectionListener documentation
would be a good place to start. After all, the listener contains the code that is being
called twice. However, that documentation provides no help.

If we look at the ListSelectionEvent documentation, we find a method named
getValueIsAdjusting. Its description says “Returns true if this is one of multiple
change events,” which sounds promising. JList reports a list selection event both
when the mouse is pressed and when it is released—as well as several more events in
between if the user moves the mouse over different values in the list. Rewriting our
controller’s valueChanged method results in only one message being printed, the one
selected when the mouse button is released:

ƒƒpublicƒvoidƒvalueChanged(ListSelectionEventƒevt)
ƒƒ{ƒifƒ(!evt.getValueIsAdjusting())
ƒƒƒƒ{ƒSystem.out.println(
ƒƒƒƒƒƒƒƒƒƒ"selected "ƒ+ƒView.this.list.getSelectedValue());
ƒƒƒƒ}
ƒƒ}

The problem of the missing scroll bars can be solved by searching the JList class doc-
umentation for “scroll.” That search finds the following:

“JList doesn’t support scrolling directly. To create a scrolling list you
make the JList the viewport view of a JScrollPane. For example:

JScrollPaneƒscrollPaneƒ=ƒnewƒJScrollPane(dataList);

where dataList is the instance of JList you want to display. The
JScrollPane component is added to the view instead of the JList.”

746
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-13)

Running the JList test

Working incrementally, we add equivalent code to the layoutView method in
Listing 13-21 and run the program to see the results. Unfortunately, nothing has
changed, and scroll bars still do not appear.

It turns out that JPanel’s default layout manager, FlowLayout, allows the list to take
up as much space as it requests. JScrollPane does not show the scroll bars until the
available space is less than the requested space. BorderLayout is a layout manager
that forces its components to fit within the available space. Using it to manage the
view’s layout results in the scroll bars appearing when the JList is small. The result-
ing code for layoutView is as follows:

ƒƒprivateƒvoidƒlayoutView()
ƒƒ{ƒthis.setLayout(newƒBorderLayout());
ƒƒƒƒthis.listƒ=ƒnewƒJList(newƒString[]ƒ{"Red",ƒ"Green",ƒ
ƒƒƒƒƒƒ"Blue",ƒ"Yellow",ƒ"Orange",ƒ"Pink",ƒ"Black"});
ƒƒƒƒJScrollPaneƒscrollpaneƒ=ƒnewƒJScrollPane(this.list);
ƒƒƒƒthis.add(scrollpane,ƒBorderLayout.CENTER);
ƒƒ}

As shown here, it is unrealistic to expect to understand and use a complex class like
JList on the first try. An excellent strategy is to work incrementally. Understand and
implement the basics, make note of the remaining issues, and then solve them one at a
time. Using this strategy, we are well on our way to making effective use of the JList
component. Reasonable next steps include making calls to the model in response to
user selections and, if required, learning how to add new values to the list while the
program is running.

13.8 Graphical Views

Many components are available for Java programs, but sometimes none of them are
quite right for a particular application. In those cases, you may need to make your
own. We have, in fact, already done this. In Section 6.7, we wrote the Thermometer
class, which displayed a temperature using an image of a thermometer.

In Section 13.8.1, we will implement a similar class to simply display a pile of tokens
for the game of Nim. In Section 13.8.2, we will go a step further and add a listener for
mouse events so that the user can utilize our new component to select the tokens to
remove from the pile.

13.8.1 Painting a Component

Instances of our custom component, PileComponent, represent a pile of tokens as cir-
cles, drawn one on top of the other, as shown in Figure 13-14. Such a component that
does its own painting usually extends the JComponent class (see Listing 13-22).

747
13.8

G
RAPH

ICAL
V

IEW
SKEY IDEA

Component-size
problems are often

related to the layout
manager.

748
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-14)

Custom component
representing a pile of
tokens for Nim

Two crucial parts of the class are instance variables, used to either store or acquire the
information required to do the painting (lines 4–5), and the paintComponent method
(lines 27–40).

Two instance variables are required: numTokens stores the actual number of tokens to
display; maxTokens stores the maximum number that could be displayed. The maxi-
mum is used to scale the circles appropriately; it is set with the constructor. numTokens
is set using a mutator method, setPileSize, called from the updateView method in
the view that contains the PileComponent object. When the pile size is changed,
this.repaint() must be called. It tells the Java system that it should call
paintComponent as soon as possible to redraw the pile.

The paintComponent method begins by calculating useful values for painting
(lines 29–32). The first two merely make temporary copies of the component’s
width and height to make them easier to use. The second two calculate the diameter
of each token and where the left side will be painted.

Lines 35-39 use a loop to draw each of the tokens in the pile.

One other detail is setting the minimum and preferred size of the component in lines 12 and
13. Without these statements, the component’s size will default to a barely visible 1 x 1
pixel square.

LOOKING BACK

Repainting is
explained in more
detail in Section 6.7.2.

749
13.8

G
RAPH

ICAL
V

IEW
S

Listing 13-22: A component that displays the size of a token pile graphically

1 // Import statements omitted.
2 publicƒclassƒPileComponentƒextendsƒJComponentƒ
3 {
4 ƒƒprivateƒintƒnumTokensƒ=ƒ0;
5 ƒƒprivateƒintƒmaxTokens;
6
7 ƒƒ/** Create a new component.
8 ƒƒ* @param max The maximum number of tokens that can be displayed. */
9 ƒƒpublicƒPileComponent(intƒmax)

10 ƒƒ{ƒsuper();
11 ƒƒƒƒthis.maxTokensƒ=ƒmax;
12 ƒƒƒƒthis.setMinimumSize(newƒDimension(40,ƒ60));
13 ƒƒƒƒthis.setPreferredSize(newƒDimension(60,ƒ90));
14 ƒƒ}
15
16 ƒƒ/**ƒReset the size of the pile.
17 ƒƒ* @param num The new pile size. 0 <= num <= maxTokens */
18 ƒƒpublicƒvoidƒsetPileSize(intƒnum)
19 ƒƒ{ƒifƒ(numƒ<ƒ0ƒ||ƒnumƒ>ƒthis.maxTokens)
20 ƒƒƒƒ{ƒthrowƒnewƒIllegalArgumentException("too many/few tokens");
21 ƒƒƒƒ}
22 ƒƒƒƒthis.numTokensƒ=ƒnum;
23 ƒƒƒƒthis.repaint();
24 ƒƒ}
25
26 ƒƒ/** Paint the component. */
27 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)
28 ƒƒ{ƒ// Values to use in painting.
29 ƒƒƒƒintƒwidthƒ=ƒthis.getWidth();
30 ƒƒƒƒintƒheightƒ=ƒthis.getHeight();
31 ƒƒƒƒintƒtokenDiaƒ=ƒMath.min(width,ƒheight/this.maxTokens);
32 ƒƒƒƒintƒtokenLeftƒ=ƒwidth/2ƒ-ƒtokenDia;
33
34 ƒƒƒƒ// Draw the tokens.
35 ƒƒƒƒg.setColor(Color.BLACK);
36 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numTokens;ƒi++)
37 ƒƒƒƒ{ƒintƒtopƒ=ƒheightƒ-ƒ(iƒ+ƒ1)ƒ*ƒtokenDia;
38 ƒƒƒƒƒƒg.fillOval(tokenLeft,ƒtop,ƒtokenDia,ƒtokenDia);
39 ƒƒƒƒ}
40 ƒƒ}
41 }

ch13/nimMultiView/

13.8.2 Making a Graphical Component Interactive

We can make PileComponent interactive, enabling users to use the mouse to select a
number of tokens by performing the following steps, also illustrated in Figure 13-15.

The steps are:

! Press the mouse button

! Drag the mouse over some of the tokens displayed by the component

! Release the mouse button

In general, implementing a custom component involves the five steps shown in
Figure 13-16. The result is a component we can use in a view, complete with its own
controllers—just like we use controllers with JTextField and JButton components.

You may notice similarities with what we have done before. For example, both a com-
ponent and a model call a method when their state is changed (Step 3), and both have
a list of objects to inform when something significant happens (Step 4).

1. Write a class that extends JComponent.
2. Declare instance variables to store the information required to paint the component

appropriately. Override the paintComponent method to do the painting.
3. Write mutator methods to update the instance variables. Call the repaint method

before exiting any method that changes the component’s state.
4. Declare a list to store the component’s listeners. Include methods to add and remove

components from the list, and a handleEvent method to inform all listeners of a
significant event.

5. Write and register listeners to detect and respond to the user’s actions.

mouse
pressed

mouse

dragged

mouse
released

750
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-16)

Steps to implement an
interactive component

KEY IDEA

A component has
features in common
with both models
and views.

(figure 13-15)

Sequence of mouse
actions triggering a
selection

On the other hand, a component is also similar to a view. Both extend a kind of com-
ponent (JPanel versus JComponent in Step 1), and both have listeners (Step 5),
although in a view the listeners are called “controllers.”

The first three steps in Figure 13-16 were already done in the earlier version of
PileComponent. In the following subsections, we will discuss Steps 4 and 5 in more
detail, referring to Listing 13-23, which contains the code for the completed component.
This new, interactive version of PileComponent will be called PileComponent2.

Informing the Component’s Listeners

When our component is used in a view, we will want to add controllers to it that
update the model. They will implement an interface such as ActionListener or
ListSelectionListener. Now, because we are writing the component, we can
choose which listener interface to use. Of all the listeners listed in Figure 13-12,
ActionListener seems the most appropriate.

Therefore, in lines 22–23 of Listing 13-23 we declare an ArrayList to store objects
implementing ActionListener. In lines 45–48 we provide an addActionListener
method, like the one provided in JButton and JTextField. A complete implementa-
tion would also provide a removeActionListener method.

In lines 101–108 we provide a private method named handleEvent, to be called
when the component detects the user selecting some tokens. It constructs an
ActionEvent object and then loops through all the registered controllers, calling their
actionPerformed method and passing the event object.

Writing and Registering Listeners

The last step, and the most complicated one, is figuring out when to call the
handleEvent method. To do so, we will write two inner classes implementing
MouseListener and MouseMotionListener. The first listener4 will be informed
each time something happens to the mouse button. The second listener will be
informed each time the mouse moves. Mouse-related events are split into two listeners
because there are many motion events. If the component only cares about mouse clicks,
we don’t want to incur the overhead associated with mouse motion events.

751
13.8

G
RAPH

ICAL
V

IEW
S

LOOKING BACK

Listing 13-8 shows a
simplified version of
JTextField. It also
has a handleEvent

method.

4 We use the term “listener” rather than “controller” because these classes will not be interacting with
the program’s model.

752
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-23: An interactive component that allows the user to select a number of tokens

1 importƒjavax.swing.JComponent;
2 importƒjava.awt.Graphics;
3 importƒjava.awt.Insets;
4 importƒjava.awt.Dimension;
5 importƒjava.awt.Point;
6 importƒjava.awt.Color;
7 importƒjava.awt.Rectangle;
8 importƒjava.awt.event.MouseListener;
9 importƒjava.awt.event.MouseMotionListener;

10 importƒjava.awt.event.MouseEvent;
11 importƒjava.awt.event.ActionListener;
12 importƒjava.awt.event.ActionEvent;
13 importƒjava.util.ArrayList;
14
15 /** A component that displays a pile of tokens and allows the user to select a number of
16 * them. It informs registered listeners when tokens have been selected. Allows the
17 * client to change the number of tokens in the pile.
18 *
19 * @author Byron Weber Becker */
20 publicƒclassƒPileComponent2ƒextendsƒJComponentƒ
21 { // Store the controllers to inform when a selection takes place.

ch13/nimMultiView/

We need to detect the following three mouse events:

! When the mouse button is pressed, we will create a new rectangle that will
bound the area (and tokens) selected.

! When the mouse is dragged, we will update the size of the bounding rectangle
and repaint the component to show it.

! When the mouse button is released, we will update the size of the bounding
rectangle one last time and then call the handleEvent method to inform all
the registered controllers.

These three steps are performed in the mousePressed, mouseDragged, and
mouseReleased methods, respectively, found in lines 121–125, 144–147, and
127–132 of Listing 13-23. All three use the getPoint method in the event object to
find out where the mouse was when the event occurred.

Of course, the component should provide feedback on which tokens have been
selected. This is accomplished in the paintComponent method. Lines 71–75 draw the
bounding rectangle, and lines 82–84 determines if it surrounds the token currently
being drawn. If it does, an instance variable is incremented, and the token’s color is
changed to yellow. An accessor method, getNumSelected, is provided to allow
clients to get the number of selected tokens.

753
13.8

G
RAPH

ICAL
V

IEW
S

Listing 13-23: An interactive component that allows the user to select a number of tokens

(continued)

22 ƒƒprivateƒArrayList<ActionListener>ƒactionListenersƒ=ƒ
23 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnewƒArrayList<ActionListener>();
24
25 // Information for painting the component.
26 ƒƒprivateƒintƒnumTokensƒ=ƒ0;
27 ƒƒprivateƒintƒmaxTokens;
28
29 ƒƒprivateƒRectangleƒselectionƒ=ƒnull; // selected area
30 ƒƒprivateƒintƒnumSelectedƒ=ƒ0; // # tokens in selected area
31 ƒƒ
32 /** Create a new component.
33 * @param maxTokens The maximum number of tokens that can be displayed. */
34 ƒƒpublicƒPileComponent2(intƒmaxTokens)
35 ƒƒ{ƒsuper();
36 ƒƒƒƒthis.maxTokensƒ=ƒmaxTokens;
37 ƒƒƒƒthis.setMinimumSize(newƒDimension(40,ƒ60));
38 ƒƒƒƒthis.setPreferredSize(newƒDimension(60,ƒ90));
39
40 ƒƒ// Add the mouse listener.
41 ƒƒƒƒthis.addMouseListener(newƒMListener());
42 ƒƒƒƒthis.addMouseMotionListener(newƒMMListener());
43 ƒƒ}
44
45 /** Add an action listener to this component's list of listeners. */
46 ƒƒpublicƒvoidƒaddActionListener(ActionListenerƒlistener)
47 ƒƒ{ƒthis.actionListeners.add(listener);
48 ƒƒ}
49
50 /** Set the size of the pile.
51 * @param num The new pile size. 0 <= num <= maxTokens */
52 ƒƒpublicƒvoidƒsetPileSize(intƒnum)
53 ƒƒ{ƒifƒ(numƒ<ƒ0ƒ||ƒnumƒ>ƒthis.maxTokens)
54 ƒƒƒƒ{ƒthrowƒnewƒIllegalArgumentException("too many/few tokens");
55 ƒƒƒƒ}
56 ƒƒƒƒthis.numTokensƒ=ƒnum;
57 ƒƒƒƒthis.selectionƒ=ƒnull;
58 ƒƒƒƒthis.numSelectedƒ=ƒ0;
59 ƒƒƒƒthis.repaint();
60 ƒƒ}
61
62 /** Paint the component. */
63 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)

754
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

Listing 13-23: An interactive component that allows the user to select a number of tokens

(continued)

64 ƒƒ{ƒ// Values to use in painting.
65 ƒƒƒƒintƒwidthƒ=ƒthis.getWidth();
66 ƒƒƒƒintƒheightƒ=ƒthis.getHeight();
67 ƒƒƒƒintƒtokenDiaƒ=ƒMath.min(width,ƒheight/this.maxTokens);
68 ƒƒƒƒintƒtokenLeftƒ=ƒwidth/2ƒ-ƒtokenDia;
69
70 // Draw the selection rectangle, if there is one.
71 ƒƒƒƒg.setColor(Color.BLACK);
72 ƒƒƒƒifƒ(this.selectionƒ!=ƒnull)
73 ƒƒƒƒ{ƒRectangleƒselƒ=ƒthis.selection;
74 ƒƒƒƒƒƒg.drawRect(sel.x,ƒsel.y,ƒsel.width,ƒsel.height);
75 ƒƒƒƒ}
76
77 // Draw the tokens. Detect which ones are selected. Count them
78 // and color them differently.
79 ƒƒƒƒthis.numSelectedƒ=ƒ0;
80 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numTokens;ƒi++)
81 ƒƒƒƒ{ƒintƒtopƒ=ƒheightƒ-ƒ(iƒ+ƒ1)ƒ*ƒtokenDia;
82 ƒƒƒƒƒƒifƒ(this.selectionƒ!=ƒnullƒ&&ƒ
83 ƒƒƒƒƒƒƒƒƒƒthis.selection.contains(tokenLeftƒ+ƒtokenDiaƒ/ƒ2,
84 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtopƒ+ƒtokenDiaƒ/ƒ2))
85 ƒƒƒƒƒƒ{ƒthis.numSelected++;
86 ƒƒƒƒƒƒƒƒg.setColor(Color.YELLOW);
87 ƒƒƒƒƒƒ}ƒelse
88 ƒƒƒƒƒƒ{ƒg.setColor(Color.BLACK);
89 ƒƒƒƒƒƒ}
90
91 ƒƒƒƒƒƒg.fillOval(tokenLeft,ƒtop,ƒtokenDia,ƒtokenDia);
92 ƒƒƒƒ}
93 ƒƒ}
94
95 /** Get the number of tokens currently selected.
96 * @return the number of tokens currently selected */
97 ƒƒpublicƒintƒgetNumSelected()
98 ƒƒ{ƒreturnƒthis.numSelected;
99 ƒƒ}

100
101 /** A helper method to inform all listeners that a selection has been made. */
102 ƒƒprivateƒvoidƒhandleEvent()
103 ƒƒ{ƒActionEventƒevtƒ=ƒnewƒActionEvent(
104 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis,ƒActionEvent.ACTION_PERFORMED,ƒ"");

755
13.8

G
RAPH

ICAL
V

IEW
S

Listing 13-23: An interactive component that allows the user to select a number of tokens

(continued)

105 ƒƒƒƒforƒ(ActionListenerƒalƒ:ƒthis.actionListeners)
106 ƒƒƒƒ{ƒal.actionPerformed(evt);
107 ƒƒƒƒ}
108 }
109
110 /** Adjust the selection's size. */
111 ƒƒprivateƒvoidƒadjustSelectionSize(PointƒmPos)
112 ƒƒ{ƒthis.selection.setSize(mPos.xƒ-ƒthis.selection.x,
113 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒmPos.yƒ-ƒthis.selection.y);
114 ƒƒƒƒthis.repaint();ƒ
115 ƒƒ}
116
117 /** Listen for mouse events within the pile. */
118 ƒƒprivateƒclassƒMListenerƒextendsƒObjectƒ
119 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒMouseListener
120 ƒƒ{
121 /** A mousePressed event signals the beginning of a selection. */
122 ƒƒƒƒpublicƒvoidƒmousePressed(MouseEventƒe)
123 ƒƒƒƒ{ƒPileComponent2.this.selectionƒ=ƒ
124 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnewƒRectangle(e.getPoint());
125 ƒƒƒƒ}
126
127 /** A mouseReleased event signals the end of a selection. Finish up the
128 * selection and inform the listeners. */
129 ƒƒƒƒpublicƒvoidƒmouseReleased(MouseEventƒe)
130 ƒƒƒƒ{ƒPileComponent2.this.adjustSelectionSize(e.getPoint());
131 ƒƒƒƒƒƒPileComponent2.this.handleEvent();
132 ƒƒƒƒ}
133 ƒƒƒ
134 // Required by MouseListener but not needed in this program.
135 ƒƒƒƒpublicƒvoidƒmouseClicked(MouseEventƒe)ƒƒƒ{}
136 ƒƒƒƒpublicƒvoidƒmouseEntered(MouseEventƒe)ƒƒƒ{}
137 ƒƒƒƒpublicƒvoidƒmouseExited(MouseEventƒe)ƒƒƒƒ{}
138 ƒƒ}
139
140 /** Listen for mouse events within the pile. */
141 ƒƒprivateƒclassƒMMListenerƒextendsƒObjectƒ
142 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒMouseMotionListener
143 ƒƒ{

13.9 Patterns

13.9.1 The Model-View-Controller Pattern

Name: Model-View-Controller

Context: A program requires a graphical user interface to interact with the user. You
want to program it with the good software engineering principles of encapsulation,
information hiding, high cohesion, and low coupling to facilitate future changes.

Solution: Organize the program into a model with one or more views and controllers.
The model abstracts the problem the program is designed to solve. Each view displays
some part of the model to the user, while controllers translate user actions in a view
into method calls on the model.

The Model-View-Controller pattern requires three templates: one for the model, one for
the combination of a view and a controller, and one for the main method. Listing 13-13
contains an excellent start on a template for views, but needs an inner class for a controller.
Listing 13-1 and Listing 13-3 can be generalized for the model’s template and the main
method’s template, respectively.

Consequences: Because the model depends only on objects implementing the IView
interface, coupling is extremely low. The interface can be changed or even completely
replaced, usually without changing the model.

756
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

LOOKING AHEAD

Written Exercise 13.2
asks you to prepare
these templates.

Listing 13-23: An interactive component that allows the user to select a number of tokens

(continued)

144 /** The bounds of the selection's rectangle changed. Adjust it. */
145 ƒƒƒƒpublicƒvoidƒmouseDragged(MouseEventƒe)
146 ƒƒƒƒ{ƒPileComponent2.this.adjustSelectionSize(e.getPoint());
147 ƒƒƒƒ}
148 ƒƒƒƒ
149 // Required by MouseMotionListener but not needed in this program.
150 ƒƒƒƒpublicƒvoidƒmouseMoved(MouseEventƒe)ƒƒƒƒƒ{}
151 ƒƒ}
152 }

Related Patterns:
! The Extended Class pattern is used by the views when they extend JPanel.

! The Has-a (Composition) pattern is used to relate the model to the views and
the views to the model.

! The Process All Elements pattern is used to update all of the views with
changes in the model.

! The Strategy pattern is used to lay out the view’s components and to provide a
controller (listener) that reacts appropriately to events in a particular component.

13.10 Summary and Concept Map

Graphical user interfaces use a library of objects, commonly called components, to
interact with users. The program is organized into a model containing the abstractions
related to the problem, views that display the model to the user, and controllers that
interpret user actions to modify the model. One model may have several views, and
each view may have several controllers.

It is also possible to create components to perform specific tasks for which no existing
component is available.

757
13.10

S
U
M

M
ARY

AN
D

C
O
N
CEPT

M
AP

13.11 Problem Set

Written Exercises

13.1 Explain how using subviews (Section 13.5) is good software engineering. Refer
specifically to the concepts of cohesion and coupling.

13.2 Write the three code templates required for the Model-View-Controller pattern.
Listing 13-13 contains an excellent start on a template for views, but needs an
inner class for a controller. Listing 13-1 and Listing 13-3 can be generalized for
the model’s template and the main method’s template, respectively.

13.3 Prepare a class diagram showing the relationships between the classes in the
Model-View-Controller pattern. Assume the controller has been written in a
separate class, as shown in Listing 13-9, and implements an ActionListener.

13.4 List the signatures for all the methods required to implement a WindowListener.

is
di

sp
la

ye
d

by

is updated by

implement

are composed of

are examples of

are examples of

are o
ften writte

n as a
n

are
regi

ster
ed w

ith

contain
are specified by

are passed

are
 ca

lle
d

by

may
 h

av
e

se
ve

ra
l

ar
e

no
tif

ied
 of

up
da

te
s b

y

a model

views

controllers

listener
interfaces

components

JButton,
JTextField

ActionListener,
ListSelectionListener

inner class

event
methods

event
objects

layout
managers

list
en to

organize the placement ofregister controllers with

758
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

13.5 The Java library contains two classes named MouseAdapter and
MouseMotionAdapter. Discuss how they could be used to simplify the
PileComponent2 class shown in Listing 13-23.

13.6 The Java library contains an interface named MouseInputListener. Examine
the documentation and discuss how it could be used in the PileComponent2
class shown in Listing 13-23.

Programming Exercises

13.7 Find the code for the version of Nim with multiple views.

a. Add a new view whose function is to offer hints to the current player. (Hint:
Assuming the rules where 1, 2, or 3 tokens may be removed, a player who
leaves 1, 2, or 3 tokens for his or her opponent has made a serious mistake.
Similarly, a player who leaves exactly four tokens is in a very strong posi-
tion. Generalize these observations.)

b. Modify the NimPlayerView class to use a JComboBox for user input
instead of JButton objects.

c. Modify the NimPlayerView class to use a JSlider for user input.

d. Add a new view whose function is to start a new game. The user should be
able to specify who starts and how large the initial pile of tokens should be.
The player should also be able to start a new game with the program choos-
ing either or both of these values randomly.

e. Views do not actually need to belong to a graphical user interface. Write a
class named NimLogger that implements IView. Modify the Nim program
to use NimLogger to write the state of the game after each move to a file.
(Hint: You should not extend JPanel or include any classes from the
javax.swing or java.awt packages. Create the NimLogger object in the
main method.)

f. Modify the model and the view so users may remove up to half of the
remaining tokens in each turn. Start the game with a random pile of 20 to
30 tokens. The existing views with three buttons each are inappropriate.
Design a new view.

g. Modify the PileComponent2 class to show the tokens as a block, three
tokens wide. The top row of the block may have less than three tokens.

h. The PileComponent2 class shown in Listing 13-23 does not work when a
user clicks and drags the mouse upward or leftward. The problem is that the
width or the length of the selection rectangle becomes negative, resulting in
an “empty” rectangle. Fix this problem.

i. The PileComponent2 class shown in Listing 13-23 currently allows the
user to select any number of visible tokens, even though the game only
allows a maximum of three tokens to be removed. Fix the component so
that the selection rectangle is not allowed to enclose more than three tokens.

759
13.11

P
RO

BLEM
S

ET

13.8 Find the code displayed in Listing 13-21. Write a simple main method to dis-
play it in a frame. Observe that it is possible to select several items at once
using the Shift or Control keys.

a. Modify the program to print all of the items that have been selected.

b. Modify the program so users can select only one item at a time.

c. The JList documentation includes sample code for a class named
MyCellRenderer. Read the documentation, and then change the program
so that each element of the list is displayed using the appropriate color.

Programming Projects

13.9 Write a program to assist users in calculating their target heart rate for an exer-
cise program. You can find many formulas on the Web for calculating target
heart rate. One is based on the user’s age, resting heart rate, and targeted inten-
sity: intensity * (220 – age – restingHR) + restingHR, where intensity is a per-
centage (typically 80 to 90%), age is the user’s age in years, and restingHR is
the user’s resting heart rate in beats per minute. The model will have mutator
methods for intensity, age, and restingHR, and accessor methods for those
three plus the target heart rate.

Two possible views are shown in Figure 13-17.

a. Write the program’s view using JTextField components.

b. Write the program’s view using JSlider components.

13.10 Write a program that allows you to display font samples. A proposed user
interface is shown in Figure 13-18. The model for this program will have meth-
ods such as setFontName, setFontSize, setBold, setItalic, and
getFont. The components used in the interface include JComboBox,
JCheckBox, JTextArea, and becker.gui.FormLayout.

760
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-17)

Two possible views for a
target heart rate calculator

13.11 Explore the documentation for the becker.xtras.nameSurfer package.5 In
particular, see the package overview and Figure 13-18 for an example of the
interface.

a. Write a model named SurferModel. Demonstrate your model, working
with classes from the nameSurfer package to form a complete program.

b. Write a view named SurferView. Demonstrate your view, working with
classes from the nameSurfer package to form a complete program. (Hint:
You will need to implement a custom component to draw the graph.)

13.12 Implement a view to choose a color. Figure 13-19 has three JSlider compo-
nents, one for each of the red, green, and blue parts of a color. Their values
range between 0 and 255. Use an empty JPanel to display the current color as
the sliders are moved by calling the panel’s setBackground method.

Demonstrate your view with a simple program. The model will have two meth-
ods: setColor and getColor. setColor is called when the OK button is
pressed, resulting in a second view being updated with the chosen color.

Simple color chooser Simple Web browser

An interface for generating font samples An interface for plotting the popularity of names
through time

761
13.11

P
RO

BLEM
S

ET

(figure 13-18)

Two interfaces

5 The original idea for this problem is attributed to Nick Parlante at Stanford University.

(figure 13-19)

Sample interfaces for a
color chooser and a

Web browser

13.13 Use the JEditorPane to implement a simple Web browser like the one shown
in Figure 13-19. Users should be able to type a URL into a text field and have
it displayed in the JEditorPane. Your browser should also correctly follow
links to display a new page. The JEditorPane may not be editable for links
to work. The model for the browser will be the current URL to display.
Enhancements may require adding a history list and other features to
the model.

a. Add scroll bars to the JEditorPane that show only if needed.

b. Add a toolbar with Forward, Back, and Home buttons.

c. Use a JComboBox for entering URLs. Add URLs the user has typed to the
JComboBox for easier selection in the future.

13.14 Implement the game of Tic-Tac-Toe for two users (see Figure 13-20). Search
the Web for the rules if you are unfamiliar with the game. Use a button for
each of the nine squares to gather input from the users. Disable the buttons
and change their labels as they are played. When the mouse is moved over an
unplayed square, show either X or O, depending on whose turn it is. Announce
the winner with a dialog box and start a new game.

13.15 Write a program that displays a bouncing ball and allows for its speed
to be changed and the size of the box it bounces in to be changed
(see Figure 13-20). Note the following hints:

! Read the documentation for the javax.swing.Timer class. An appropriate
delay is 1000/30. There are several classes named Timer; be sure to read the
right one.

! Write a BallModel class with methods such as getBallBounds and
setBoxBounds. The java.awt.Rectangle class is convenient for main-
taining size and position information for both the ball and the box. The
BallModel will also contain an instance of Timer, updating the position of
the ball every time it “ticks.”

Tic-tac-toe game Animated bouncing ball

762
CH

AP
TE

R
13

| G
RA

PH
IC

AL
U

SE
R

IN
TE

RF
AC

ES

(figure 13-20)

Sample interfaces for a
game and an animation

! The BallView class should contain a custom component to draw the ball. It
will need a controller implementing ComponentListener to resize the
model’s box when the component is resized.

! The BallView class should also contain an instance of JSlider to adjust
the speed of the bouncing ball.

13.16 Implement a model for a right triangle. It will have two methods to set the base
and the height but will calculate the length of the hypotenuse using the
Pythagorean theorem (a2 + b2 = c2). It will also have three methods to get the
length of each side. The length of the base and the height must be between 1
and 100, inclusive. Figure 13-21 shows several different views of the model.

a. Implement a view using JTextField components.

b. Implement a view using JSlider components.

c. Implement a view using a JButton to increment the length of the base and
another to decrement it. Do so similarly for the height.

d. Implement a view using JSpinner to adjust the base and height.

e. Implement a view using JCombobox or JList that allows the user to select
one of several standard triangle sizes.

f. Implement a custom component that draws a picture of the triangle. Set the
size of the triangle using one of the other views.

g. Implement a custom component that draws a picture of the triangle. Add a
controller for the mouse that detects clicks on the triangle. When the trian-
gle is clicked, paint “handles” to show that it is selected. Allow the user to
change its size by dragging the handles.

h. Implement a view showing several of the preceding views other than (e). Be
sure that they all display the same information about the triangle model.

763
13.11

P
RO

BLEM
S

ET

(figure 13-21)

Several views of a
triangle model

	C5743_FM.pdf
	C5743_01.pdf
	C5743_02.pdf
	C5743_03.pdf
	C5743_04.pdf
	C5743_05.pdf
	C5743_06.pdf
	C5743_07.pdf
	C5743_08.pdf
	C5743_09.pdf
	C5743_10.pdf
	C5743_11.pdf
	C5743_12.pdf
	C5743_13.pdf
	C5743_Ep.pdf
	C5743_AppA.pdf
	C5743_AppB.pdf
	C5743_AppC.pdf
	C5743_AppD.pdf
	C5743_AppE.pdf
	C5743_Index.pdf
	C5743_LA.pdf

